501 research outputs found
In B cells, phosphatidylinositol 5-phosphate 4-kinase-α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling.
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are enigmatic lipid kinases with physiological functions that are incompletely understood, not the least because genetic deletion and cell transfection have led to contradictory data. Here, we used the genetic tractability of DT40 cells to create cell lines in which endogenous PI5P4Kα was removed, either stably by genetic deletion or transiently (within 1 h) by tagging the endogenous protein genomically with the auxin degron. In both cases, removal impacted Akt phosphorylation, and by leaving one PI5P4Kα allele present but mutating it to be kinase-dead or have PI4P 5-kinase activity, we show that all of the effects on Akt phosphorylation were dependent on the ability of PI5P4Kα to synthesize phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] rather than to remove PI5P. Although stable removal of PI5P4Kα resulted in a pronounced decrease in Akt phosphorylation at Thr308 and Ser473, in part because of reduced plasma membrane PIP3, its acute removal led to an increase in Akt phosphorylation only at Ser473. This process invokes activation primarily of mammalian target of rapamycin complex 2 (mTORC2), which was confirmed by increased phosphorylation of other mTORC2 substrates. These findings establish PI5P4Kα as a kinase that synthesizes a physiologically relevant pool of PI(4,5)P2 and as a regulator of mTORC2, and show a phenomenon similar to the "butterfly effect" described for phosphatidylinositol 3-kinase Iα [Hart JR, et al. (2015) Proc Natl Acad Sci USA 112(4):1131-1136], whereby through apparently the same underlying mechanism, the removal of a protein's activity from a cell can have widely divergent effects depending on the time course of that removal.S.J.B. was supported by an A.J. Clark Studentship from the British Pharmacological Society, A.D. by Sidney Sussex College, the Cambridge Overseas Trust and the Säid Foundation, and J.H.C by the MRC (Grant RG64071).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Proceedings of the National Academy of Sciences (PNAS)
The influence of the cosmological expansion on local systems
Following renewed interest, the problem of whether the cosmological expansion
affects the dynamics of local systems is reconsidered. The cosmological
correction to the equations of motion in the locally inertial Fermi normal
frame (the relevant frame for astronomical observations) is computed. The
evolution equations for the cosmological perturbation of the two--body problem
are solved in this frame. The effect on the orbit is insignificant as are the
effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late
LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer
We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods
Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit
We will investigate the influence of the inhomogeneity of the universe,
especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a
gravitationally bound local system such as the solar system. We concentrate on
the dynamical perturbation to the planetary motion and derive the leading order
effect generated from the LTB model. It will be shown that there appear not
only a well-known cosmological effect arisen from the homogeneous and isotropic
model, such as the Robertson-Walker (RW) model, but also the additional terms
due to the radial inhomogeneity of the LTB model. We will also apply the
obtained results to the problem of secular increase in the astronomical unit,
reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of
the universe cannot have a significant effect for explaining the observed
.Comment: 12 pages, no figure, accepted for publication in Journal of
Astrophysics and Astronom
The co-evolution of technological promises, modelling, policies and climate change targets
The nature and framing of climate targets in international politics has changed substantially since their early expressions in the 1980s. Here, we describe their evolution in five phases-from 'climate stabilization' to specific 'temperature outcomes'-co-evolving with wider climate politics and policy, modelling methods and scenarios, and technological promises (from nuclear power to carbon removal). We argue that this co-evolution has enabled policy prevarication, leaving mitigation poorly delivered, yet the technological promises often remain buried in the models used to inform policy. We conclude with a call to recognise and break this pattern to unleash more effective and just climate policy. This Perspective maps the history of climate targets and shows how the international goal of avoiding dangerous climate change has been reinterpreted in the light of new modelling methods and technological promises, ultimately enabling policy prevarication and limiting mitigation
Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
Background
Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy.
Methods
We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance.
Results
We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography.
Conclusion
Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases
Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination ‘as a public health problem’ when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models’ predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020
Combinatorial discovery of polymers resistant to bacterial attachment
Bacterial attachment and subsequent biofilm formation are key challenges to the long term performance of many medical devices. Here, a high throughput approach coupled with the analysis of surface structure-property relationships using a chemometics approach has been developed to simultaneously investigate the interaction of bacteria with hundreds of polymeric materials on a microarray format. Using this system, a new group of materials comprising ester and hydrophobic moieties are identified that dramatically reduce the attachment of clinically relevant, pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and uropathogenic Escherichia coli). Hit materials coated on silicone catheters resulted in up to a 30 fold reduction in coverage compared to a commercial silver embedded catheter, which has been proven to half the incidence of clinically acquired infection. These polymers represent a new class of materials resistant to bacterial attachment that could not have been predicted from the current understanding of bacteria-surface interactions
Inspired or foolhardy: sensemaking, confidence and entrepreneurs' decision-making.
The purpose of this paper is to investigate the role of confidence in how both new and experienced entrepreneurs interpret and make sense of their business environment to inform decision-making. We illustrate our conceptual arguments with descriptive results from a large-scale (n = 6289) survey on entrepreneurs' perception of business performance and their decisions taken at a time of uncertainty in an economic downturn. Quantitative findings are stratified along experiential lines to explore heterogeneity in entrepreneurial decision-making and directly inform our conceptual arguments, while qualitative data from open questions are used to explain the role of confidence. Newer entrepreneurs are found to be more optimistic in the face of environmental risk, which impacts on their decision-making and innovative capabilities. However, the more experienced entrepreneurs warily maintain margin and restructure to adapt to environmental changes. Instead of looking directly at the confidence of individuals, we show how confidence impacts sensemaking, and ultimately, decision-making. These insights inform research on the behaviour of novice and experienced entrepreneurs in relation to innovative business activities. Specifically, blanket assumptions on the role of confidence may be misplaced as its impact changes with experience to alter how entrepreneurs make sense of their environment
The Relational Impact of Multiple Sclerosis: An Integrative Review of the Literature Using a Cognitive Analytic Framework
This integrative literature review uses cognitive analytic therapy (CAT) theory to examine the impact of a chronic illness, multiple sclerosis (MS), on relationships and mental health. Electronic searches were conducted in six medical and social science databases. Thirty-eight articles met inclusion criteria, and also satisfied quality criteria. Articles revealed that MS-related demands change care needs and alter relationships. Using a CAT framework, the MS literature was analysed, and five key patterns of relating to oneself and to others were identified. A diagrammatic formulation is proposed that interconnects these patterns with wellbeing and suggests potential “exits” to improve mental health, for example, assisting families to minimise overprotection. Application of CAT analysis to the literature clarifies relational processes that may affect mental health among individuals with MS, which hopefully will inform how services assist in reducing unhelpful patterns and improve coping. Further investigation of the identified patterns is needed
- …