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Table of content figure: Hit polymers discovered using high throughput combinatorial microarrays, exhibiting 

reduced bacterial attachment compared with commercial catheter materials.  
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Bacterial attachment and subsequent biofilm formation are key challenges to the performance of medical 

devices. In this study, a high throughput materials discovery approach is developed which utilises surface 

structure-property relationships generated by assessing the interaction of bacteria with hundreds of polymeric 

materials simultaneously in a microarray format. Using this system, a new group of structurally related materials 

comprising ester and cyclic hydrophobic moieties are identified that dramatically reduce the attachment of 

pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). Hit materials 

coated on silicone achieved up to a 30 fold (96.7%) reduction in bacterial coverage compared with a commercial 

silver hydrogel coating in vitro and were effective at resisting bacterial attachment in vivo in a mouse implant 

infection model. These novel polymers represent a new class of materials resistant to bacterial attachment that 

could not have been predicted from the current understanding of bacteria-surface interactions. 
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Healthcare-associated infection is widely acknowledged as the most frequent adverse event in health care. It has 

been estimated that 80% of the infections acquired in hospitals involve biofilms
1
, surface associated bacterial 

communities within which bacteria show up to 1000 times higher resistance to antimicrobials and host defences 

when compared with their planktonic counterparts
2,3

. Biofilms on the surface of medical devices provide the 

massive bacterial inocula responsible for manifesting disease and can also serve as gene pools for antibiotic-

resistance conferring plasmids
4,5

. Most strategies for reducing biofilm associated infections focus on the 

modification of existing materials used to manufacture in-dwelling medical devices by the incorporation of 

antibiotics
6,7

 or other antimicrobials such as silver salts, nitrofurazone, chlorhexidine, polymerised quaternary 

ammonium surfactants, antibacterial peptides and anionic nanoporous hydrogels
8-15

. These approaches are 

directed towards the killing of bacterial cells attached to a material, whereas greater efficacy in preventing biofilm 

formation could be realised by the design of new materials with inherent resistance to bacterial attachment that 

would prevent biofilm formation
16

. Previous attempts to use a low-fouling strategy include poly(ethylene glycol) 

brushes
17

 and. zwitterionic polymers
18,19

. A significant limitation to the development of a material resistant to 

bacterial attachment is the poor understanding of the bacterial response to surfaces required for ab initio 

materials design. To overcome this constraint, we have developed a high throughput approach to study bacterial 

attachment in hundreds of materials in a parallel assay format that utilises polymer microarrays
20,21

. The 

microarray approach has previously proven useful for identifying polymeric materials that support stem cell 

attachment and outgrowth.
22-25

  Here, microarrays were adapted to the combinatorial development of novel 

materials resistant to bacterial attachment, as depicted schematically in Fig. 1.  

A library of 22 acrylate monomers was selected from those available commercially to provide a wide chemical 

diversity including ethylene glycol chains of various length, fluoro-substituted alkanes, linear and cyclic aliphatic, 

aromatic and amine moieties. To generate a large combinatorial space, 16 monomers (Fig. 1a[1-16]) were mixed as 

the major component with another 6 monomers (Fig. 1a[A-F]) at ratios of 100:0 (6 repeats), 90:10, 85:15, 80:20, 

75:25 and 70:30 to create 576 monomer solutions. The monomer solutions were printed in triplicate as 300 m 

diameter spots with a height of approximately 20 ʅŵ onto a poly (hydroxyl ethylmethacrylate) (pHEMA) coated 
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microscope slide where they were photopolymerised by a free radical mechanism to form the first generation 

combinatorial polymer microarray (Fig. 1b). 

Three pathogens Pseudomonas aeruginosa, Staphylococcus aureus and uropathogenic Escherichia coli (UPEC)
26

 

were transformed with plasmids expressing the green fluorescent protein (GFP) gene to facilitate a high 

throughput screen using a fluorescent intensity readout (Fig. 2a). These pathogens were chosen as they represent 

both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa and UPEC) bacteria and are frequently the cause 

of medical device-associated infections
27

. The polymer microarrays were incubated with a suspension of 

planktonic bacteria for each of the pathogens separately for 3 days (72 h) revealing a wide range of bacterial 

attachment levels (Fig 2b-d). To simulate in vivo conditions such as those encountered in the urinary tract, a 

microarray was conditioned with artificial urine for 72 h before incubation with UPEC and, in another experiment, 

the RPMI-1640 media was replaced with artificial urine for the full 72 h incubation with UPEC (Fig 2e-f). 

Biomineralisation was observed on some polymers as opaque deposits after conditioning in artificial urine and 

after culture in artificial urine in the absence of buffering (Supplementary Fig. S1) which stimulated greater 

bacterial attachment in all cases. The time period of this assay provided a sufficiently stringent assay for the 

ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ŽĨ Ă ƐĞƚ ŽĨ ͚Śŝƚ͛ ŵĂƚĞƌŝĂůƐ ƚŚĂƚ ƌĞƐŝƐƚĞĚ ďĂĐƚĞƌial attachment (Supplementary Fig. S2). The 

fluorescence signal (F) (equation 1) was used to quantify the level of bacterial attachment for each bacterial strain. 

A linear correlation (R
2
 = 0.93) between F and surface coverage measured by confocal measurements of polymer 

spots after incubation with UPEC confirmed the utility of F as a reliable estimate of bacterial coverage 

(Supplementary Fig. S3). In cases where polymers were formed from monomers that had opposing influences on 

bacterial attachment, a linear correlation between systematic variations in material composition and F was 

observed (Supplementary Fig. S4). For some polymer compositions the biological behaviour of the copolymer was 

superior to the homopolymers of the two monomer constituents. In one such example, shown in Supplementary 

Fig. S5, the F of P. aeruginosa (FPA) measured on the copolymer of monomer 11:C (80:20) of 0.26 ± 0.1 x 10
6
 

arbitrary units (AU) was lower than the homopolymer of 11 (FPA = 0.52 x 10
6
 ± 0.05 x 10

6 
AU) and the copolymer of 

monomer 11:C (70:30) (FPA = 0.42 x 10
6
 ± 0.01 x 10

6 
AU). This synergistic effect was observed for 11 of the 96 
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monomer pairs explored in the first generation array and in all cases led to improved resistance to bacterial 

attachment, demonstrating the importance of screening for hit materials within a copolymer library. 

Varying levels of attachment were observed for the three bacterial species to different polymer surfaces 

(Supplementary Fig. S6). This finding is not surprising given the different surface properties and macromolecular 

surface composition of Gram-positive and Gram-negative bacteria
28

 and the diverse attachment mechanisms 

employed which can involve surface proteins, flagella, fimbriae
29

 and exopolysaccharides
30

.  

To assess the resistance of any given material to diverse bacterial species and strains and as a guide to selecting hit 

monomers for further study, a composite bacterial attachment parameter was developed. The F value from each 

strain on each polymer composition, including UPEC incubated on artificial urine conditioned slides and incubated 

in artificial urine, was normalised to the maximum GFP fluorescence intensity on the slide and averaged over all 

three replicates to produce a bacterial performance value, iota (ʀ) (equation 2). The value of ʀ is plotted in an 

intensity map for all generation 1 polymers in Fig. 2g, revealing materials that have a high attachment of all three 

bacterial strains (shown as red) and those with a low attachment of all three (presented as blue). In order to 

compare the performance of each monomer used to fabricate the polymers, the average ʀ from each of the 

materials containing a given monomer was determined. These average ʀ͛Ɛ are shown in Fig. 2h ranking the 

monomers corresponding to their ability to prevent bacterial attachment, considering the major and minor 

monomers separately. Of all the monomers, monomers 8 and B produced materials with the lowest average ʀ, 

whilst monomers 7 and E produced materials with the highest average ʀ. 

To investigate the influence of polymer surface properties on bacterial attachment, high throughput surface 

characterisation (HT-SC) of the polymer microarray was undertaken
31

. Techniques that probe the outermost 

surface of materials were employed; X-ray photoelectron spectroscopy (XPS) for quantitative elemental and 

functional analysis, atomic force microscopy (AFM) for topographical characterisation, time of flight secondary ion 

mass spectrometry (ToF-SIMS) for molecular characterisation, and water contact angle (WCA) measurement to 

probe the surface wettability
20,31-34

. The influence of each property on bacterial attachment was assessed for all 

three bacterial strains separately. No correlation was identified between bacterial attachment and surface 
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elemental composition (Supplementary Fig. S7), WCA or roughness (Supplementary Fig. S8), for the 496 materials 

studied on the first generation array. ToF-SIMS analysis coupled with the chemometrics technique of partial least 

square (PLS) regression has been demonstrated as a powerful technique for correlating surface chemistry 

represented in ToF-SIMS spectra with a univariate data set such as water contact angle
33

 or stem cell 

attachment
24,25,35

, and was applied here to search for correlations between the surface chemistry of the array with 

the F values from each strain and to identify important surface moieties for bacterial attachment.  

The PLS regression model produced by this analysis successfully predicted the F values for P. aeruginosa and S. 

aureus from the ToF-SIMS spectra (Fig. 3a) as evidenced by the linear relationship between the predicted and 

experimental F values, shown in Fig. 3b-d, with an R
2
 value of 0.68 and 0.76 for the two bacterial species, 

respectively. The PLS model for S. aureus gave a good prediction of the bacterial performance for all polymers 

except those containing monomer 1, 6 or 10. No correlation was identified for UPEC (R
2
 = 0.28). Only 17% of the 

materials on the array had a FUPEC value greater than 1% of FUPEC max compared with 97% and 96% for P. aeruginosa 

and S. aureus, respectively. The low attachment of this strain on the materials screened made it difficult to 

compute a suitable PLS regression model; thus, this lack of a correlation does not exclude the possibility of a 

dependence of UPEC bacterial attachment on surface chemistry.  

The successful prediction of bacterial attachment by P. aeruginosa and S. aureus from the ToF-SIMS spectra 

demonstrates that the attachment of these strains is dependent on the surface chemistry. More specifically, the 

influence of each of the hundreds of ions in the SIMS spectra on bacterial attachment is quantified by the 

regression coefficient (RC) where a positive coefficient indicates that the ion in question promotes whilst negative 

ones resist bacterial attachment (Fig. 3e). The surface chemical moieties assigned to fragments with the highest 

PLS RC are shown in Fig. 3e for both P. aeruginosa and S. aureus. In general, hydrocarbon secondary ions 

correlated with low bacterial attachment and oxygen containing ions from certain pendant groups were observed 

for high bacterial attachment for both P. aeruginosa and S. aureus. In particular, ions from cyclic carbon groups 

(C4H
-
, C6H

-
), ester groups (CHO2

-
), the tertiary butyl moiety (C4H7

+
) and

 
ions from aliphatic groups (C2H3

+
, C2H5

+
, 

C3H7
+
) were correlated with lower bacterial attachment for both pathogens. Ions from ethylene glycol groups 

(C2H3O
+
, C2H3O2

-
), and hydroxyl containing fragments (C4H5O2

-
, C6H11O3

-
) correlated with higher bacterial 
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attachment. These results point to the influence of moieties from particular monomers that are associated with 

the biological performance of the resultant polymer; bacterial attachment is reduced by the cyclic carbon 

environments in monomers 4 and B, the relatively higher density of ester groups in materials formed from the 

triacrylate monomers 13 and 15, the tertiary butyl group of monomer 5 and the dimethyl hydrocarbon segment on 

monomers 2, 8 and 12. Bacterial attachment is increased by the ethylene glycol group on monomer 1, 9, 16 and A 

and the hydroxyl group on monomers 6, 7, and 10.  

To determine the best monomer composition to resist attachment by all three bacterial pathogens a second 

generation array was formulated that focussed on the hit constituents from the first generation array (Fig. 1d) but 

with greater variation in composition for each monomer pair. Monomer 4 was included as it contained the cyclic 

hydrocarbon moieties identified by the ToF SIMS ions, C4H
-
 and C6H

-
,
 
revealed to be associated with low bacterial 

adhesion by the PLS regression analysis. The top 4 hit monomers were selected (15, 5, 8 and B) and mixed with 

each other and monomer 4 at ratios of x:(1-x) where x varied from 10 to 90. This array contained 145 different 

materials (4 replicates of each) plus 4 materials selected as positive controls that exhibited high bacterial 

attachment from the first generation array. Attachment after 3 days of incubation with all three bacterial 

pathogens including UPEC incubated with artificial urine conditioned slides was assessed for the array and the ʀ for 

each material determined (Fig. 4). 

The top 6 copolymer compositions and 4 corresponding homopolymers with low bacterial attachment were 

chosen from the bacterial screen on the second generation array for scale-up from the microarray spots to 8-10 

mm diameter sample coupons ƚŽ ŝŶǀĞƐƚŝŐĂƚĞ ƚŚĞ ƐĐĂůĂďŝůŝƚǇ ŽĨ ƚŚĞ ƉŽůǇŵĞƌ͛Ɛ ƉŚǇƐŝco-chemical properties and 

biological performance (Supplementary Fig. S9-10). Initial scale up experiments included monomer 15 (and other 

triacrylates) but resulted in the formation of brittle materials that were observed to crack during the solvent 

extraction step. This was consistent with the formation of highly cross-linked polymer and, thus, monomer 15 was 

removed from subsequent scale up experiments. The bacterial coverage was found to be at least 2-fold lower on 

all scaled up materials compared with the positive control (Supplementary Fig. S9a). Confocal microscopy coupled 

with live/dead staining (Supplementary Fig. S10) on the scaled-up polymer coupons revealed that, in common with 

the control polymer, a mixture of live and dead attached bacteria are observed. To simulate the more challenging 
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in vivo conditioning by urine likely to occur on urinary catheters, P. aeruginosa, S. aureus and UPEC were incubated 

with polymer coupons pre-conditioned with artificial urine. For all three strains a greater than 3-fold reduction in 

bacterial coverage was observed for this assay compared with the positive control (Supplementary Fig. S9b), 

suggesting these materials are able to resist bacterial attachment in the presence of urine components. SIMS of 

the polymer coupons suggested that the aliphatic pendant group on monomers 4 and 8 was surface enriched 

ĐŽŵƉĂƌĞĚ ǁŝƚŚ ƚŚĞ ĞƋƵŝǀĂůĞŶƚ ŵŝĐƌŽĂƌƌĂǇ ƐƉŽƚƐ͕ ǁŚŝĐŚ ĂůƚĞƌĞĚ ƚŚĞ ƌĞƐƉĞĐƚŝǀĞ ŵĂƚĞƌŝĂůƐ͛ ďŝŽůŽŐŝĐĂů ƉĞƌĨŽƌŵĂŶĐĞ 

(Supplementary Fig. S9,11).  

To prove the concept of these hits as potential medical device coatings monomers were dip coated and cured on 

silicone catheters (Fig. 1e) and bacterial attachment was compared to silicone catheters and a commercially 

available state-of-the-art silver containing coating. The 4 homopolymers of the hit monomers, 6 hit copolymer 

formulations and a positive control for each bacterial pathogen were coated along the luminal and abluminal 

surfaces of the catheters (Fig. 1f-g), ascertained by SEM (Supplementary Fig. S12). The coated catheters were then 

incubated with P. aeruginosa, S. aureus or UPEC for 72 h. Representative confocal images from the coated 

catheters after bacterial incubation are shown in Fig. 5a and the quantified biofilm coverage for each bacteria and 

corresponding ʀ normalised to the biofilm coverage measured on silicone are shown in Fig. 5b.  

In all cases the coated catheters had substantially lower bacterial coverage than the silicone elastomer for all three 

pathoŐĞŶƐ͘ A ŶƵŵďĞƌ ŽĨ ƚŚĞ ͚Śŝƚ͛ ĂĐƌǇůĂƚĞ ŵĂƚĞƌŝĂůƐ ĂůƐŽ ĞǆŚŝďŝƚĞĚ Ă ƐƵƉĞƌŝŽƌ ƉĞƌĨŽƌŵĂŶĐĞ ƚŽ ƚŚĞ ƐŝůǀĞƌ-hydrogel 

(BactiGuard®) coated latex catheter (Bardex®), which has been shown to be clinically effective at reducing catheter 

associated asymptomatic bacteriuria when compared with standard latex catheters
36

. It should be noted that the 

prevention of bacterial attachment to silver-hydrogel catheters is considered to be a consequence of the toxicity of 

silver ions to the bacteria, which is a different principle to the prevention of attachment by our ͚Śŝƚ͛ ƉŽůǇŵĞƌ 

coatings. The lowest surface coverage for P. aeruginosa was the homopolymer of monomer 4 that had a bacterial 

surface coverage of 1.2% ± 0.5% representing a 28 fold reduction compared to the silicone catheter and 17 fold 

lower than the BactiGuard® coated Bardex® catheter, for S. aureus was the copolymer of monomers B:5 (70:30) 

with a bacterial surface coverage of 0.5% ± 0.3% (67 fold reduction compared to silicone; 30 fold reduction 

compared to BactiGuard®), and for UPEC was the copolymer of B:4 (90:10) with a bacterial surface coverage of 



9 

 

1.2% ± 0.6% (9 fold reduction compared to silicone; 6 fold reduction compared to BactiGuard®). The homopolymer 

of B produced the catheter coating with the lowest ʀ of 2.0% ± 1.0%, hence best preventing the attachment of all 

three different bacterial pathogens. The surface coverage on this coating was 2.3% ± 1.3%, 1.0% ± 0.4%, and 1.5% 

± 0.7% for P. aeruginosa, S. aureus and UPEC, respectively. This amounted to a 12-fold reduction in the composite 

ƉĂƌĂŵĞƚĞƌ ʀ ĐŽŵƉĂƌĞĚ ǁŝƚŚ ĂŶ ƵŶĐŽĂƚĞĚ ƐŝůŝĐŽŶĞ ĐĂƚŚĞƚĞƌ ĂŶĚ ϳ-fold lower than the silver embedded BactiGuard® 

coated Bardex® catheter.  

There are a number of different strategies reported in the literature to reduce bacterial attachment to surfaces 

which are not yet commercially available; Zwitterionic coatings function by attachment prevention.
18,19

 

Comparison with the performance of our hits to these literature reports is difficult since experimental 

methodologies vary significantly. Attachment of P. aeruginosa (PA01) has been reported to be reduced by 25 fold 

compared to glass after 3 h incubation on a poly(sulfobetaine methacrylate) grafted surface
19

 and in an incubation 

time closer to ours, a poly(carboxybetaine methacrylate) grafted surface reduced attachment of PA01 by 11 fold 

after 96 h bacterial exposure compared to glass
18

.   

The absence of a correlation between bacterial attachment and the contact angle or roughness of the materials 

studied (Supplementary Fig. S8) suggests that the interaction of bacteria with the methacrylate/acrylate library 

cannot be explained simply by hydrophobic interactions or roughness only, as previously invoked to explain 

bacterial performance on self-assembled monolayers, stainless steel and certain polymers
37

. It should be noted 

that the bacterial cell incubation experiments were not conducted under flow conditions, thus, this assay did not 

assess any advantage gained from the shielding from shear that increased roughness could provide. The ability to 

predict the bacterial attachment from the chemistry of the materials as represented by the ToF-SIMS spectra (Fig. 

3(b-d)) confirms that the bacteria-material interaction is dependent on the surface chemistry. The PLS regression 

highlighted the ethylene glycol moieties employed in these libraries and hydroxyl groups for promoting the 

attachment of P. aeruginosa and S. aureus. The increased attachment associated with surface hydroxyl groups 

suggests a role for hydrogen bonding, which may be through an interaction with the 

lipopolysaccharides/lipoteichoic acids/exopolysaccharides present on the bacterial cell surface
30

. For reduced 

bacterial attachment, the PLS regression analysis identified hydrophobic moieties such as aromatic and aliphatic 
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carbon groups when accompanied by the weakly polar ester groups. By comparison with polystyrene, a purely 

hydrophobic material that is well known to support bacterial attachment (Supplementary Fig. S13)
38

, the role of 

the ester group and the weakly amphiphilic structure of these hit polymers appears to be important for reduced 

bacterial attachment. Antibacterial behaviour has previously been reported on zwitterionic materials
19

 where 

disparate chemical properties are presented in close proximity on the molecular scale analogous to the weak 

amphiphiles identified in our work. To further investigate the role of amphiphilic materials for preventing bacterial 

attachment, a third polymer microarray was produced that contained homopolymers of 15 methacrylate/acrylate 

monomers that had aliphatic, cyclic or aromatic pendant groups. F for P. aeruginosa, S. aureus and UPEC and ʀ for 

each material is shown in Supplementary Fig. S14. The relatively high bacterial attachment observed for P. 

aeruginosa provided the greatest distinction between the materials. The 6 materials with the lowest FPA all 

contained cyclic or aromatic hydrocarbon ŐƌŽƵƉƐ͘ IŶ ĐŽŶƚƌĂƐƚ͕ ƚŚĞ ϲ ŵĂƚĞƌŝĂůƐ ǁŝƚŚ ƚŚĞ ŚŝŐŚĞƐƚ ʀ Ăůů contained linear 

aliphatic carbon pendant groups, suggesting that the presence of ring structures are a determining factor for 

preventing bacterial attachment to methacrylate/acrylate polymers (Supplementary Fig. S14).  

Confocal microscopy revealed neither dead nor living bacteria on the hit materials after 72 h incubation with 

planktonic bacteria (Fig. 5a) indicating that the mechanism behind the low attachment is adhesion prevention 

rather than a mechanism involving killing. Consistent with this conclusion, growth curves showed no inhibition by 

ƚŚĞ ͚Śŝƚ͛ ƉŽůǇŵĞƌƐ ĨŽƌ ƚŚĞ ďĂĐƚĞƌŝĂů ƐƚƌĂŝŶƐ ƵƐĞĚ (Supplementary Fig. S15) and live/dead staining of UPEC biofilms 

revealed both live and dead cells present within the biofilm, which is typical of biofilms (Supplementary Fig. S10). 

Furthermore, there is no evidence of cytotoxicity relating to the polymers since the materials have elsewhere been 

shown to support the culture of delicate embryonic stem cell lines
24

. 

The ability of the lead acrylates discovered to resist the attachment of bacteria is likely to depend on the ability of 

bacterial cells to sense and respond to their immediate environment. This may be a consequence of the individual 

cells or the bacterial population collectively sensing the nature of the polymer surface via their cell envelope 

associated sensory proteins or via specific surface structures such as flagellar and pili involved in near-surface 

movement
39

 or even through quorum sensing (bacterial cell-to-cell communication) mechanisms
40

 such that the 

lack of bacterial attachment occurs through these decision making processes rather than simply being a 
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consequence of physico-chemical interactions between the bacteria and surface alone. Specific examples include 

the Rcs sensor kinase which controls the expression of a number of E. coli genes in response to growth on a solid 

surface
41

 Furthermore, production of the P. aeruginosa exopolysaccharides Pel and Psl are both under quorum 

sensing control
42

. Thus, it is highly likely that bacterial responses to surfaces are more sophisticated than currently 

appreciated. 

The in vivo environment is normally far more challenging than in vitro assessment for candidate medical materials. 

We therefore carried out a subcutaneous foreign body infection model to test the efficacy of one of the hit 

materials (Fig. 1h). A copolymer of monomer 4 and di(ethylene glycol) methyl ether methacrylate (DEGMA) 

amenable to the dip-coating methodology was prepared by catalytic chain transfer polymerisation (measured 

properties of the resultant polymer are shown in the Supplementary Table. S1). The DEGMA was included to tune 

ƚŚĞ ƉŽůǇŵĞƌ͛Ɛ ŵĞĐŚĂŶŝĐĂů ƉƌŽƉĞƌƚŝĞƐ ĨŽƌ in vivo use without compromising the pŽůǇŵĞƌ͛Ɛ ƌĞƐŝƐƚĂŶĐĞ ƚŽ ďĂĐƚĞƌŝĂů 

attachment (Supplementary Figs. S16 and S17) and to exploit the ability of the oligo(ethylene glycol) moiety to 

reduce protein fouling
43

 in the high protein containing environment.  

Both control silicone and dip-coated silicone catheters were, implanted subcutaneously into mice and inoculated 

with bioluminescent S. aureus Xen29. Immediately following inoculation similar bioluminescence was observed for 

both coated and uncoated catheters (Fig 6). After 1 day, >10 fold reduction in bioluminescence was observed on 

the coated catheters compared with the uncoated silicone, a difference that persisted for 4 days (Fig. 6a-c). 

Bioluminescence requires the bacteria to be respiring aerobically, thus, will not detect bacteria that are viable but 

are either dormant or growing anerobically. To confirm reduced bacterial numbers, the mice were sacrificed on 

day 4 and the numbers of bacteria were quantified at the infection site (both the catheter and surrounding tissue), 

kidneys and spleen. Bacterial numbers were reduced by nearly two orders of magnitude on the coated catheter 

compared to the uncoated catheter, whilst an order of magnitude reduction in bacterial numbers was observed in 

the tissue surrounding the implant, the kidneys and the spleen, suggesting a reduced amount of systemic bacteria 

(Fig. 6e). The reduction in bioluminescence on the coated catheter in the live animal demonstrates that the coating 

successfully reduced bacterial survival compared to the silicone control. We interpret the persistence of bacteria 

on the silicone catheter as indicative of bacteria that were able to attach to the silicone and form resistant biofilms 
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thereby avoiding clearance by the host defenses. These observations clearly suggest that the performance of the 

͚hit͛ polymer identified in vitro translates to the challenging in vivo environment where reduced bacterial 

attachment and biofilm formation on the device is observed in the live animal and post mortem examination 

indicates reduced local and systemic infection. Sufficiently small diameter (2.7 mm) silver containing hydrogel 

coated catheters are not commercially available for the mouse model employed, preventing comparison of the in 

vivo performance with the in vitro experiments. 

In summary, a high throughput methodology has been developed for the discovery of polymeric materials resistant 

to bacterial attachment using high throughput surface characterisation and chemometrics, which has identified 

novel simple chemical moieties that reduce bacterial adhesion to surfaces. The hit compositions discovered 

represent a new class of materials exhibiting resistance to bacterial attachment, which could not have been 

predicted from the current understanding of bacterial-material interactions. An in vitro comparison after 3 days 

incubation revealed up to a 67-fold reduction in bacterial coverage compared with a commercial uncoated medical 

grade silicone and a 30-fold lower bacterial coverage than a commercial silver hydrogel coating͘ TŚĞ ĐŽĂƚŝŶŐ͛s 

resistance to bacterial attachment was demonstrated in vivo using a murine foreign body infection model 

confirming the potential of the hit materials as coatings for biomedical devices. By further developing this high 

throughput screening approach to include other bacterial species (including freshly isolated clinical strains), 

pathogens specific to particular niches and different growth conditions (representative of different environments), 

new polymeric materials may be found that are resistant to combinations of pathogens for specific medical 

devices, water purification systems, food preparation surfaces and utensils, or any scenario where bacterial 

adhesion is problematic. In contrast to killing mechanisms, the anti attachment mechanism does not place 

selective evolutionary pressure on organisms to develop antibiotic resistance. 

Methods 

Polymer array synthesis. Polymer microarrays were synthesised using methods previously described
22

. Monomers 

were purchased from Aldrich, Scientific Polymers and Polysciences and printed onto epoxy-coated slides 
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(Xenopore) dip-coated into 4% (w/v) pHEMA (Aldrich) using 946MP6B pins (ArrayIt) and a Pixsys 5500 robot 

(Cartesian) or a XYZ3200 dispensing workstation (Biodot). The arrays were dried at <50 mTorr for at least 7 days. 

High throughput surface characterisation. Arrays were characterised by AFM, WCA, XPS and ToF-SIMS (see 

supplementary methods). The ToF-SIMS spectra data were analysed using principle component analysis (PCA)
44

, 

and the correlation between ToF-SIMS spectra and bacterial adhesion was analysed using partial least squares 

(PLS) regression
35

. Both multivariate analysis methods were carried out using the Eigenvector PLS_Toolbox 3.5. 

Scale up of materials. Selected compositions were scaled up to 10 mm polymer coupons. These were prepared by 

casting 5 µl of monomer solution (75% (v/v) monomer, 25% (v/v) DMF and 1% (w/v) 2,2-dimethoxy-2-phenyl 

acetophenone) onto epoxy-functionalised slides (Xenopore) dip-coated with 4% (w/v) pHEMA in ethanol. For 

growth inhibition studies, 40 µl of monomer solution was pipetted into a well of a 96 well microwell plate. Samples 

were irradiated with UV (365 nm) for 10 mins to initiate polymerisation with O2 < 2000 ppm. The samples were 

dried at <50 mTorr for at least 7 days. To produce coated catheters, 4 cm long silicone lengths were cut from a 

silicone Foley urinary catheters (Bard, outer diameter 7.3 mm ʹin vitro or 2.7 mm -in vivo ). The inside and outside 

surface was oxygen plasma treated for 5 min at 50 W. For in vitro use, plasma treated catheters were immediately 

immersed in monomer solution for 10 s and blotted to remove excessive monomer solution before 

photopolymerisation using UV (365 nm) for 1 min, with O2 < 2000 ppm. For in vivo studies, plasma activated 

catheters were dip-coated with a 20% polymer solution in dichloromethane. The samples were then dried at <50 

mTorr for at least 7 days. Polymer for in vivo studies was prepared by catalytic chain transfer polymerisation (see 

supplementary methods). The resultant polymer solution was used for coating silicone catheters without further 

purification. Uncoated silicone catheters and BactiGuard® (silver containing hydrogel) coated latex catheters 

(Bardex®) were used as controls. SEM imaging of coated catheters was conducted on a Jeol 6060LV variable 

pressure SEM. Samples were gold coated prior to imaging using a Leica EM SCD005 sputter coater.  

Bacterial Growth Conditions. Three different bacterial species, P. aeruginosa PAO1, S. aureus 8325-4 and UPEC 

were routinely grown on either LB (Luria-Bertani, Oxoid, UK) agar plates at 37 
o
C or in broth at 37 

o
C with 200 rpm 

shaking. Three constitutively GFP expressing plasmids, pGFP
45

, pSB2019 and pSB2020
46

 were transformed into P. 
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aeruginosa PA01, S. aureus 8325-4 and UPEC respectively and maintained by adding appropriate antibiotics to the 

culture media. RPMI-1640 chemically defined medium (Sigma, UK) and artificial urine
47

 were used in biofilm 

experiment for standardising the conditions and mimicking CAUTI, respectively. For the in vivo study S. aureus 

Xen29 (Caliper), were routinely grown on Tryptic soya Broth (Oxoid, UK) at 37
 o

C until an OD of 0.8, washed twice 

in phosphate buffered saline (PBS, Oxoid, UK) and stored in aliquots of 1x10
9
 cfu in PBS/20% glycerol. These were 

then thawed and diluted with PBS prior to injection into the lumen of the catheter. 

Prior to incubation with the bacteria, the microarray slides were washed in distilled H2O for 10 min, air-dried and 

UV sterilised. Artificial urine conditioned slides were incubated for 72 h at 37 
o
C in 15 ml of artificial urine with 5% 

CO2. Subsequently, slides were washed 3 times in RPMI-1640 medium or artificial urine. Bacteria were grown on 

polymer slides under similar conditions to those previously described
48,49

. Briefly, UV-sterilised polymer slides were 

incubated in 15 ml medium inoculated with diluted (OD600 = 0.01) GFP-tagged bacteria from overnight cultures 

grown at 37 
o
C with 60 rpm shaking for 24 h or 72 h. As growth medium controls, the slides were also incubated 

without bacteria. At the desired time points, the slides were removed, and washed three times with 15 ml PBS at 

room temperature for 5 min. After rinsing with distilled H2O to remove salts and air dried, the fluorescent images 

from the slides incubated in medium only and medium containing bacteria were acquired using a GenePix 

Autoloader 4200AL Scanner (Molecular Devices, US) with a 488 nm excitation laser and a blue emission filter (510-

560nm). The total fluorescence intensity from polymer spots was acquired using GenePix Pro 6 software 

(Molecular Devices, US). A similar bacterial assay was also applied to scaled-up coupons and 4 cm sections of 

coated catheters. After washing with distilled H2O, the coupons or catheters were stained with 20 µM SYTO17 dye 

(Invitrogen, UK) at room temperature for 30 min. After air drying, the samples were examined using a Carl Zeiss 

LSM 700 Laser Scanning Microscope with ZEN 2009 imaging software (Carl Zeiss, Germany). The coverage of 

bacteria on the surface was analysed using open source Image J 1.44 software (National Institute of Health, US). 

The viability of bacteria attached to polymer surfaces was assessed by live/dead staining. Briefly bacteria were 

stained with 10 µM SYTO 9 green-fluorescent dye for live bacteria and 60 µM propidium iodide red-fluorescent dye 

for cell membrane damaged (dead) bacteria. After staining at room temperature for 30 min, the samples were 

rinsed with distilled H2O, air dried and observed using Laser Scanning Confocal Microscopy. To evaluate the growth 
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inhibitory properties of the hit polymers, polymer coated wells were UV sterilised for 15 min, and inoculated with 

bacteria (OD600 = 0.01) from overnight cultures. The OD was monitored by an Infinite 200 microplate reader 

(Tecan, UK) at 37°C every 30 min for 24 h to obtain the respective growth curves. 

The fluorescence signal (F) from each bacterial pathogen was determined using equation 1 where F is the 

fluorescence intensity measured per unit area by the laser scanner after incubation with bacteria and Fcontrol is the 

fluorescence intensity measured per unit area by the laser scanner measured on a control slide consisting of a 

replica array that was incubated in media for 72 h without bacteria. For polymers where F was below the limit of 

detection F was made to equal 0 (See supplementary information for further discussion).  

 ѝ ൌ ܨ  െ ௖௢௡௧௥௢௟ܨ  (1) 

The bacterial performance (ʀ) was determined using equation 2 where the subscript to the F indicates the bacterial 

pathogen and the F max is the maximum fluorescence signal measured on any spot on the array for a given 

pathogen. AƌƚŝĨŝĐŝĂů ƵƌŝŶĞ ŝƐ ĂďďƌĞǀŝĂƚĞĚ ƚŽ ͚ĂƵ͛͘ Note that ʀ reported for generation 2 arrays and scaled-up samples 

did not include results of UPEC in artificial urine. 

 ɜ ൌ ሺ ѝౌఽబభ
ѝౌఽబభౣ౗౮ ൅ ѝఴయమఱషర

ѝఴయమఱషరౣ౗౮ ൅ ѝ౑ౌుి
ѝ౑ౌుిౣ౗౮ ൅ ѝ౑ౌుి ౟౤ ౗౫

ѝ౑ౌుిౣ౗౮ ୧୬ ୟ୳ ൅ ѝ౑ౌుి ౥౤ ౗౫ ౙ౥౤ౚ౟౪౟౥౤౛ౚ
ѝ౑ౌుిౣ౗౮ ୭୬ ୟ୳ ୡ୭୬ୢ୧୲୧୭୬ୣୢሻ ൊ ͷ ൈ ͳͲͲ  (2) 

Murine catheter implant model. To evaluate the in vivo resistance of polymer materials to bacterial attachment, 

the real time, non-invasive catheter foreign body implant model was used
50

 (see supplementary methods). A 1 cm 

coated catheter segment was inserted subcutaneously into female Balb/c mice, 19-22 g (Charles River). The 

animals were allowed to recover with regular observation for 24 h prior to anesthesia with isoflurane and injection 

of 1x10
5
 S. aureus Xen29 (Caliper Life Sciences Inc) in 50 µl PBS into the lumen of the catheter using an 31 gauge 

needle and syringe. Mice were imaged for up to 5 min prior to (to assess background luminescence) and 10 min 

after initial bacterial inoculation and then every 24 h, using an IVIS spectrum camera (Caliper). EMLA cream was 

applied daily after imaging and weight and clinical condition of animals recorded. 

The total photon emissions from the catheter implantation site were quantified by using the living image software 

package (Xenogen Corp), over a 4 day period. At day 4 the mice were humanely killed and the catheter and 

surrounding tissue removed, the mouse kidneys and spleen harvested, and the number of S. aureus Xen 29 colony 

forming units (cfu) present determined using standard procedures
50

. The cfu counts were normalized to the mass 

of tissue taken. Reported bioluminescence values had the background luminescence measured from uninoculated 
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inserted catheters subtracted. In each experiment, a group of 3 mice were implanted with control or coated 

catheters and the experiment repeated on 3 occasions with data from n=9 for each group pooled for statistical 

analysis. 

In pilot studies, Nano-ct, computed tomographic scans were used to confirm the subcutaneous localization of the 

catheter and were acquired using a Nanoect/CT (Bioscan). Briefly post catheter insertion, mice were anaesthetised 

using isoflurane and scanned at 45 kVP, using high resolution parameters. The resulting images were reconstructed 

and analysed using invivoscope software.  
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Fig. 1. Schematic of the approach used to identify ͚Śŝƚ͛ ĐŽŵƉŽƐŝƚŝŽŶƐ that resist bacterial attachment. (a) The chemical structures of the 

monomers. (b-f) Outline of the strategy utilised for identifying hit composition. (b) Fluorescence scanner image of the first generation 

microarray after incubation with P. aeruginosa for 72 h. 3 replicate arrays were present on each glass slides. Scale bar is 10 mm. (c) Intensity 

map of the bacterial data from the first generation array. (d) The feedback loop used to select monomer compositions for a second generation 

array. The biological performance of each monomer, the identification of hit compositions that display synergistic effects and the results from 

the PLS regression of ToF-SIMS spectra and bacterial data were used to inform the composition of the second generation array. (e) Schematic 

representation of the hit composition scaled up. (f) An SEM image of the cross-section of Ă ƐŝůŝĐŽŶĞ ĐĂƚŚĞƚĞƌ ĐŽĂƚĞĚ ǁŝƚŚ Ă ͚Śŝƚ͛ ƉŽůǇŵĞƌ 

(thickness = 20-25 µm). The scale bar is 100 µm. (g) Confocal images of SYTO17 stained biofilm for the 3 pathogens studied (P. aeruginosa (PA), 

S. aureus (SA), UPEC) from coated and uncoated silicone catheters. Each image is 160 x 160 µm. (h) Nano-ct tomographic scan of a coated 

catheter implanted subcutaneously into a murine model. To highlight, the catheter has been false coloured green. (i) A schematic 

representation of a catheter coated with the hit composition. 
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Fig. 2. (a) Schematic of the bacterial attachment assay. Bacterial strains were transformed with GFP and grown in LB broth overnight. The 

polymer microarray was inoculated with bacteria in RPMI1640 medium and after incubation the fluorescence on each spot 

quantified using a fluorescence scanner. (b-f) Intensity map of F measured for each bacterial strain on the first generation array after 

72 h incubation; (b) P. aeruginosa, (c) S. aureus, (d) UPEC, (e) UPEC grown in artificial urine, and (f) UPEC grown on an artificial urine 

conditioned slide. (g) Intensity map of the ʀ obtained for each material in the array. The major monomers are listed on the y-axis 

whilst the composition of the minor monomers is shown in the x-axis. The large shaded area within each outlined area indicates the 

mean value and the mean ± one standard deviation unit is presented in the narrow columns to the right (plus) and left (minus) of the 

mean, n=3. (h) The average ʀ for all materials containing a specific monomer, ranked from lowest to highest. The major and minor 

monomers were considered separately. The colour next to each monomer is indicative ŽĨ ƚŚĂƚ ŵŽŶŽŵĞƌ͛Ɛ ŵĞĂŶ ʀ and is coloured by 

the same intensity scale of (g). 
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Fig. 3. (a) Schematic depiction of the PLS regression model used to predict the biological performance of 

materials by correlating F with the ToF-SIMS spectra. (b-d) The predicted bacterial attachment 

determined from the PLS regression model for (b) P. aeruginosa (PA) (R
2
=0.68), (c) S. aureus (SA) 

(R
2
=0.76), and (d) UPEC (R

2
=0.28). The y=x line is drawn as a guide. Polymers are grouped according to the 

major monomer 1 (×), 2 (), 3 (×), 4 (), 5 (×), 6 (), 7 (×), 8 (), 9 (×), 10 (), 11 (×), 12 (), 13 (×), 14 (), 

15 (×), 16 (). (e) The key ions identified to be important by ToF-SIMS PLS regression analysis for the 

surface attachment of both P. aeruginosa (PA) and S. aureus (SA). The regression coefficient (RC) for each 

ion is also shown from the regression analysis with each bacterium separately. The RCs have been shaded 

according to their value (red = positive, blue = negative). 
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Fig. 4. ʀ determined for all materials represented in the second generation array. 5 monomers from the first 

generation array were mixed pairwise at 14 different ratios. The % content of the major monomer is 

indicated along the x-axis: (a) 15, (b) 8, (c) 4, (d) B and (e) 5 (Fig. 1a). The co-monomer is indicated in the 

y-axis. (f) The ʀ determined for high bacterial attachment polymers included in the second generation 

array from the first generation array. The colour bar is non-linear to highlight the low ʀ measured for this 

array. The mean of each value is shown as the large shaded area within each outlined rectangle and the 

mean ± one standard deviation unit is presented in the narrow columns to the right (plus) and left (minus) 

of the mean, n=4. 
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Fig. 5. Bacterial coverage on catheters coated with hit polymers after 72 hours culture. (a) Confocal microscopy 

images of P. aeruginosa, S. aureus and UPEC stained with SYTO17 growing on coated catheters, 

unmodified silicone and silicone treated with media without bacteria as a control. Each image is 160 x 160 

µm. (b) quantification of bacterial surface coverage for P. aeruginosa (), S. aureus (), UPEC () and ʀ 
() from confocal images of each sample. Coverage was normalised to the coverage on silicone. The error 

bars represent ± one standard deviation unit, n=5. The composition of the positive control was specific to 

the bacterial strain used: P. aeruginosa = 6(100%), S. aureus = 7(100%), UPEC = 1(70%)E(30%). The 

fluorescence signal observed on the media-only controls is due to auto-fluorescence of the substrate and 

translates to a small erroneous (<0.5%) estimate of bacterial coverage. 
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Fig. 6. In vivo performancĞ ŽĨ ͚Śŝƚ͛ ƉŽůǇŵĞƌ͘ CĂƚŚĞƚĞƌƐ ĚŝƉ-coated with hit polymer 4-co-DEGMA were implanted 

subcutaneously within mice and inoculated with S. aureus Xen29. (a) The bioluminescence at the infection 

site was measured on the day of inoculation (day 0) and for the next 4 days. Measurements were taken 

for both uncoated () and coated () silicone catheters. The error bars represent ± one standard 

deviation unit, n=9 (3 groups of 3 mice assessed separately). The difference in bioluminescence between 

coated and uncoated samples from days 1-4 was confirmed to 99.5% confidence (t-test). Bioluminescence 

was normalised to the output at day 0 and all measurements have had the background luminescence 

subtracted, measured prior to catheter innoculation. (b-c) Luminescence images with overlaid bright field 

images of mice implanted with both uncoated (left) and coated (right) catheter segments on day 0 (b) and 

day 4 (c). (d) At day 4 the mice were sacrificed, the insertion site plus the kidneys and spleen harvested, 

and the number of bacteria on the tissue determined. Measurements were taken for both uncoated () 

and coated () silicone catheters. The error bars represent ± one standard deviation unit, n=3 (taken from 

1 group of 3). The difference in cfu counts between coated and uncoated samples was confirmed to 99% 

confidence for the catheter and surrounding tissue, to 90% confidence for the kidneys and to 75% 

confidence for the spleen (t-test). 
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