65 research outputs found
Restorative justice : including victims, offenders and communities in criminal justice dialogue
Restorative justice (RJ), an alternative to the dominant retributive justice system, is a more holistic approach that encompasses the victim, offender and the community. This study supplemented existing research by exploring the perceptions of RJ experts and facilitators on the impact of RJ practices on offender reentry, as well as victim and community satisfaction. The study addressed the following questions: What is restorative justice? What are the major outcomes and challenges? What is the role of social work? The review of the literature compared the retributive justice model with a restorative justice framework for responding to crime. As restorative justice is a relatively new area of research, the study used a flexible research design to understand the emerging phenomenon. Data were gathered through narrative interviews with ten RJ experts and facilitators, including several pioneers in the field. Restorative justice is not simply victim offender mediation, although they often get confused. Fully restorative practices, which involve the victim, offender, and community, have several different applications including victim-offender meetings for less serious crime, serious and violent crime dialogue, circle processes, and community accountability boards. Partly restorative practices, which do not include all the stakeholders, include contacting victims, community service and defense outreach. The study\u27s most significant finding, however, was that specific programs are far less important than the philosophy and principles associated with restorative justice. Study participants reported several outcome criteria including victim and community satisfaction, offender recidivism rates, offender satisfaction, restitution payment, and story-telling. Seven out of ten noted that restorative justice interventions were mostly positive, and struggled to come up with a single negative example. The two factors most likely to contribute to negative outcomes were lack of preparation on the part of the facilitator(s) and inappropriateness of a participant. Although funding was seen as a major challenge, the most significant challenge participants noted was creating a paradigm shift in the way criminal justice is viewed. The U.S. justice system is based largely on a punitive approach, while restorative justice requires systems thinking in which the offender, victim and community all play an important role. Participants felt that a balanced approach—both top-down and bottom-up—was needed to grow and sustain the restorative justice movement. Created largely through grassroots, volunteer efforts, field workers need to collaborate more to share best practices, advocate for greater funding, and educate the public. At the same time, if restorative justice is going to have lasting impact on the justice system, it needs government involvement to provide additional legitimacy, funding and support. Additional research is also needed, along with clearer benchmarks of successful outcomes. Restorative justice values greatly mirror social work values of self determination, individuality, acceptance and accountability. To keep ordinance with the Social Work Code of Ethics, social workers should be aware of this philosophy so they may positively advocate for clients as well as more just and principled statewide and national policies. At the same time social workers should be aware that mixing the roles of therapist and restorative justice facilitator could be detrimental to restorative justice outcomes. Those who wish to facilitate victim offender dialogue should do so carefully
The role of taxonomic expertise in interpretation of metabarcoding studies
Abstract
The performance of DNA metabarcoding approaches for characterizing biodiversity can be influenced by multiple factors. Here, we used morphological assessment of taxa in zooplankton samples to develop a large barcode database and to assess the congruence of taxonomic identification with metabarcoding under different conditions. We analysed taxonomic assignment of metabarcoded samples using two genetic markers (COI, 18S V1–2), two types of clustering into molecular operational taxonomic units (OTUs, ZOTUs), and three methods for taxonomic assignment (RDP Classifier, BLASTn to GenBank, BLASTn to a local barcode database). The local database includes 1042 COI and 1108 18S (SSU) barcode sequences, and we added new high-quality sequences to GenBank for both markers, including 109 contributions at the species level. The number of phyla detected and the number of taxa identified to phylum varied between a genetic marker and among the three methods used for taxonomic assignments. Blasting the metabarcodes to the local database generated multiple unique contributions to identify OTUs and ZOTUs. We argue that a multi-marker approach combined with taxonomic expertise to develop a curated, vouchered, local barcode database increases taxon detection with metabarcoding, and its potential as a tool for zooplankton biodiversity surveys
Emergency Department Pediatric Readiness Among US Trauma Centers: A Machine Learning Analysis of Components Associated With Survival.
OBJECTIVE: We used machine learning to identify the highest impact components of emergency department (ED) pediatric readiness for predicting in-hospital survival among children cared for in US trauma centers. BACKGROUND: ED pediatric readiness is associated with improved short-term and long-term survival among injured children and part of the national verification criteria for US trauma centers. However, the components of ED pediatric readiness most predictive of survival are unknown. METHODS: This was a retrospective cohort study of injured children below 18 years treated in 458 trauma centers from January 1, 2012, through December 31, 2017, matched to the 2013 National ED Pediatric Readiness Assessment and the American Hospital Association survey. We used machine learning to analyze 265 potential predictors of survival, including 152 ED readiness variables, 29 patient variables, and 84 ED-level and hospital-level variables. The primary outcome was in-hospital survival. RESULTS: There were 274,756 injured children, including 4585 (1.7%) who died. Nine ED pediatric readiness components were associated with the greatest increase in survival: policy for mental health care (+8.8% change in survival), policy for patient assessment (+7.5%), specific respiratory equipment (+7.2%), policy for reduced-dose radiation imaging (+7.0%), physician competency evaluations (+4.9%), recording weight in kilograms (+3.2%), life support courses for nursing (+1.0%-2.5%), and policy on pediatric triage (+2.5%). There was a 268% improvement in survival when the 5 highest impact components were present. CONCLUSIONS: ED pediatric readiness components related to specific policies, personnel, and equipment were the strongest predictors of pediatric survival and worked synergistically when combined
Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article
- …