86 research outputs found

    Superheavy Nuclei in the Relativistic Mean Field Theory

    Get PDF
    We have carried out a study of superheavy nuclei in the framework of the Relativistic Mean-Field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed.Comment: 29 pages Latex, 13 ps figures, to appear in Nucl. Phys.

    Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10

    Get PDF
    We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars

    Quiescent and flare analysis for the chromospherically active star Gl355 (LQHya)

    Full text link
    We discuss ROSAT and ASCA observations of the young active star Gl355}. During the ROSAT observation a strong flare was detected with a peak flux more than an order of magnitude larger than the quiescent level. Spectral analysis of the data allows us to study the temperature and emission measure distribution, and the coronal metal abundance, for the quiescent phase and, in the case of ROSAT, also during the evolution of the flare. The global coronal metallicity Z/Z0.1Z/Z_{\odot} \sim 0.1 derived from both ROSAT and ASCA data is much lower than solar and presumably also much lower than the photospheric abundance expected for this very young star. The temperature structure of the quiescent corona was about the same during the various observations, with a cooler component at T17T_1 \sim 7 MK and a hotter component (to which only ASCA was sensitive) at T220T_2 \sim 20 MK. During the flare, the low temperature component remained approximately constant and equal to the quiescent value, while the high-temperature component was the only one that varied. We have modeled the flare with the hydrodynamic-decay sustained-heating approach of Reale at al. (1997) and we have derived a loop semi--length of the order of 1.5\sim 1.5 stellar radii, i.e. much larger than the dimensions of flares on the Sun, but comparable with the typical dimensions inferred for other stellar flares. We have compared the derived loop size with that estimated with a simpler (but physically inconsistent) approach, finding that for this, as well for several other stellar flares, the two methods give comparable loop sizes. Possible causes and consequences of this result are discussed.Comment: A&A, in pres

    Rotational modulation of the photospheric and chromospheric activity in the young, single K2-dwarf PW And

    Get PDF
    High resolution echelle spectra of PW And (HD~1405) have been taken during eight observing runs from 1999 to 2002. The detailed analysis of the spectra allow us to determine its spectral type (K2V), mean heliocentric radial velocity (V_hel = -11.15 km/s) rotational velocity (vsin{i} = 22.6 km/s), and equivalent width of the lithium line 6707.8 AA (EW(LiI) = 273 mAA). The kinematic (Galactic Velocity (U, V, W)) confirms its membership of the Local Association moving group, in agreement with the age (30 to 80 Myrs) inferred from the color magnitude diagram and the lithium equivalent width. Photospheric activity (presence of cool spots that disturb the profiles of the photospheric lines) has been detected as changes in the the bisectors of the cross correlation function (CCF) resulting of cross-correlate the spectra of PW And with the spectrum of a non active star of similar spectral type. These variations of the CCF bisectors are related to the variations in the measured radial velocities and are modulated with a period similar to the photometric period of the star. At the same time, chromospheric activity has been analyzed, using the spectral subtraction technique and simultaneous spectroscopic observations of the H_alpha, H_beta, NaI D_1 and D_2$, HeI D_3, MgI b triplet, CaII H&K, and CaII infrared triplet lines. A flare was observed during the last observing run of 2001, showing an enhancement in the observed chromospheric lines. A less powerful flare was observed on 2002 August 23. The variations of the chromospheric activity indicators seem to be related to the photospheric activity. A correlation between radial velocity, changes in the CCF bisectors and equivalent width of different chromospheric lines is observed with a different behaviour between epochs 1999, 2001 and 2002.Comment: Latex file with 20 pages, 21 figures tar'ed gzip'ed. Full postscript (text, figures and tables) available at http://www.ucm.es/info/Astrof/users/dmg/pub_dmg.html Accepted for publication in: Astronomy & Astrophysics (A&A

    A Uniform Analysis of 118 Stars with High-Contrast Imaging: Long Period Extrasolar Giant Planets are Rare around Sun-like Stars

    Full text link
    We expand on the results of Nielsen et al. (2008), using the null result for giant extrasolar planets around the 118 target stars from the VLT NACO H and Ks band planet search (Masciadri et al. 2005), the VLT and MMT Simultaneous Differential Imaging (SDI) survey (Biller et al. 2007), and the Gemini Deep Planet Survey (Lafreniere et al. 2007) to set constraints on the population of giant extrasolar planets. Our analysis is extended to include the planet luminosity models of Fortney et al. (2008), as well as the correlation between stellar mass and frequency of giant planets found by Johnson et al. (2007). Doubling the sample size of FGKM stars strengthens our conclusions: a model for extrasolar giant planets with power-laws for mass and semi-major axis as giving by Cumming et al. (2008) cannot, with 95% confidence, have planets beyond 65 AU, compared to the value of 94 AU reported in Nielsen et al. (2008), using the models of Baraffe et al. (2003). When the Johnson et al. (2007) correction for stellar mass (which gives fewer Jupiter-mass companions to M stars with respect to solar-type stars) is applied, however, this limit moves out to 82 AU. For the relatively new Fortney et al. (2008) models, which predict fainter planets across most of parameter space, these upper limits, with and without a correction for stellar mass, are 182 and 234 AU, respectively.Comment: 67 pages, 16 figures, accepted to Ap

    X-ray variability of NGC 2516 stars in the XMM-Newton observations

    Full text link
    We present the characteristics of the X-ray variability of stars in the cluster NGC2516 as derived from XMM-Newton/EPIC/pn data. The X-ray variations on short (hours), medium (months), and long (years) time scales have been explored. We detected 303 distinct X-ray sources by analysing six EPIC/pn observations; 194 of them are members of the cluster. Stars of all spectral types, from the early-types to the late-M dwarfs, were detected. The Kolmogorov-Smirnov test applied to the X-ray photon time series shows that, on short time scales, only a relatively small fraction (ranging from 6% to 31% for dG and dF, respectively) of the members of NGC2516 are variable with a confidence level \geq99%; however, it is possible that the fraction is small only because of the poor statistics. The time X-ray amplitude distribution functions (XAD) of a set of dF7-dK2 stars, derived on short (hours) and medium (months) time scales, seem to suggest that medium-term variations, if present, have a much smaller amplitude than those on short time scales; a similar result is also obtained for dK3-dM stars. The amplitude variations of late-type stars in NGC2516 are consistent with those of the coeval Pleiades stars. Comparing these data with those of ROSAT/PSPC, collected 7-8 years earlier, and of ROSAT/HRI, just 4-5 years earlier, we find no evidence of significant variability on the related time scales, suggesting that long-term variations due to activity cycles similar to the solar cycle are not common among young stars. Indications of spectral variability was found in one star whose spectra at three epochs were available.Comment: 15 pages, 8 figures, published in A&

    From Radio to X-ray: Flares on the dMe Flare Star EV Lacertae

    Full text link
    We present the results of a campaign to observe flares on the M dwarf flare star EV Lacertae over the course of two days in 2001 September, utilizing a combination of radio continuum, optical photometric and spectroscopic, ultraviolet spectroscopic, and X-ray spectroscopic observations, to characterize the multi-wavelength nature of flares from this active, single late-type star. We find flares in every wavelength region in which we observed. In the multi-wavelength context, the start of the intense radio flare is coincident with an impulsive optical U-band flare, to within one minute, and yet there is no signature of an X-ray response. There are other intervals of time where optical flaring and UV flaring is occurring, but these cannot be related to the contemporaneous X-ray flaring: the time-integrated luminosities do not match the instantaneous X-ray flare luminosity, as one would expect for the Neupert effect. We investigate the probability of chance occurrences of flares from disparate wavelength regions producing temporal coincidences, but find that not all the flare associations can be explained by a superposition of flares due to a high flaring rate. We caution against making causal associations of multi-wavelength flares based solely on temporal correlations for high flaring rate stars like EV Lac.Comment: 52 pages, 13 figures, accepted for publication in the Astrophysical Journa
    corecore