16 research outputs found

    The "extreme phenotype approach" applied to male breast cancer allows the identification of rare variants of ATR as potential breast cancer susceptibility alleles

    Get PDF
    In oncogenetics, some patients could be considered as "extreme phenotypes", such as those with very early onset presentation or multiple primary malignancies, unusually high numbers of cancers of the same spectrum or rare cancer types in the same parental branch. For these cases, a genetic predisposition is very likely, but classical candidate gene panel analyses often and frustratingly remains negative. In the framework of the EX2TRICAN project, exploring unresolved extreme cancer phenotypes, we applied exome sequencing on rare familial cases with male breast cancer, identifying a novel pathogenic variant of ATR (p.Leu1808*). ATR has already been suspected as being a predisposing gene to breast cancer in women. We next identified 3 additional ATR variants in a cohort of both male and female with early onset and familial breast cancers (c.7762-2A>C; c.2078+1G>A; c.1A>G). Further molecular and cellular investigations showed impacts on transcripts for variants affecting splicing sites and reduction of ATR expression and phosphorylation of the ATR substrate CHEK1. This work further demonstrates the interest of an extended genetic analysis such as exome sequencing to identify very rare variants that can play a role in cancer predisposition in extreme phenotype cancer cases unexplained by classical cancer gene panels testing

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Abstract: Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Incomplete Timothy syndrome secondary to a mosaic mutation of the CACNA1C gene diagnosed using next-generation sequencing

    No full text
    International audienceAutosomal dominant genetic diseases can occur de novo and in the form of somatic mosaicism, which can give rise to a less severe phenotype, and make diagnosis more difficult given the sensitivity limits of the methods used. We report the case of female child with a history of surgery for syndactyly of the hands and feet, who was admitted at 6 years of age to a pediatric intensive care unit following cardiac arrest. The electrocardiogram (ECG) showed a long QT interval that on occasions reached 500ms. Despite the absence of facial dysmorphism and the presence of normal psychomotor development, a diagnosis of Timothy syndrome was made given the association of syndactyly and the ECG features. Sanger sequencing of the CACNA1C gene, followed by sequencing of the genes KCNQ1, KCNH2, KCNE1, KCNE2, were negative. The subsequent analysis of a panel of genes responsible for hereditary cardiac rhythm disorders using Haloplex technology revealed a recurrent mosaic p.Gly406Arg missense mutation of the CACNA1C gene in 18% of the cells. This mosaicism can explain the negative Sanger analysis and the less complete phenotype in this patient. Given the other cases in the literature, mosaic mutations in Timothy syndrome appear more common than previously thought. This case demonstrates the importance of using next-generation sequencing to identify mosaic mutations when the clinical picture supports a specific mutation that is not identified using conventional testing

    Advancing precision oncology through systematic germline and tumor genetic analysis: The oncogenetic point of view on findings from a prospective multicenter clinical trial of 666 patients

    No full text
    Abstract Introduction With the emergence of targeted therapies, there is a need to accurately identify more tumor biomarkers. The EXOMA trial was designed to offer tumor and germline exome sequencing (ES) to patients with solid malignant tumors and facing therapeutic failure. As hereditary cancer predispositions could be identified, with genetic counseling and health management implications, a genetic consultation was systematically established. This design needs to be discussed as genetic human resources are limited and indication of theranostic tests will increase. Methods Genetic counseling was conducted within 15 days following inclusion in the study for patients recruited between December 2015 and July 2019. In silico analyses from theranostic ES were limited to 317 genes involved in oncogenesis, from both tumor and blood DNA. Results Six hundred and sixty six patients had a genetic consultation before ES. In 65/666 patients, 66 germline pathogenic or likely pathogenic (P/LP) variants were identified in 16 actionable genes and seven non‐actionable genes according to French guidelines. 24/65 patients had previously received genetic analysis for diagnostic purposes, and for 17 of them, a P/LP variant had already been identified. Among the 48/65 remaining cases for which the EXOMA protocol revealed a previously unknown P/LP variant, only 19 met the criteria for genetic testing for inherited cancer risk after familial survey. These criteria had not been identified by the oncologist in 10 cases. In 21/65 cases, the variant was considered incidental. Discussion In 7.4% of patients, an undiagnosed hereditary genetic predisposition was identified, whether or not related to the clinical presentation, and germline analysis impacted oncological management for only 6.3% of the cohort. This low percentage should be weighed against the burden of systematic genetic consultation and urgent circuits. Information or training tools to form oncologists to the prescription of germline genetic analyses should be explored, as well as information supports and patient preferences

    The transfer of multigene panel testing for hereditary breast and ovarian cancer to healthcare: What are the implications for the management of patients and families?

    No full text
    IF 5.008 (2015/2016)International audienceUntil recently, the molecular diagnosis of hereditary breast and ovarian cancer (HBOC) was mostly based on BRCA1/2 testing. Next generation sequencing and the recent discovery of new genes involved in HBOC now permit the transfer of genomic capture targeting multiple candidate genes from research to clinical use. However, the implications for the management of patients and their families have not been extensively studied, in particular since some of these genes are not well-established cancer predisposing genes. We studied 583 consecutive patients from Burgundy (France) fulfilling the criteria for BRCA testing using a next generation sequencing 25-genes panel including 20 well-established high-risk cancer genes as well as more recently identified predisposing HBOC cancer. A pathogenic BRCA1/2 mutation was found in 51 patients (9%). Besides, we found 37 pathogenic or likely pathogenic mutations in 10 different high to low-risk genes in 34 patients (6%). The most frequently mutated genes were CHEK2 (n = 12; 2%), ATM (n = 9; 1.5%), and PALB2 (n = 4; 0.6%). Three patients had a mutation in two different predisposing genes. The analysis of clinical actionability conducted in mutation-positive individuals revealed that additional disease-specific screening and/or prevention measures beyond those based on personal and family history alone had been recommended in 69% of cases. In conclusion, multigene panel testing is a powerful tool to identifying high to low-risk HBOC susceptibility genes. The penetrance and spectrum of cancers with these other genes are sometimes undefined, and further collaborative work is crucial to address this question
    corecore