58 research outputs found

    Intraventricular catheter placement by electromagnetic navigation safely applied in a paediatric major head injury patient

    Get PDF
    Introduction: In the management of severe head injuries, the use of intraventricular catheters for intracranial pressure (ICP) monitoring and the option of cerebrospinal fluid drainage is gold standard. In children and adolescents, the insertion of a cannula in a compressed ventricle in case of elevated intracranial pressure is difficult; therefore, a pressure sensor is placed more often intraparenchymal as an alternative option. Discussion: In cases of persistent elevated ICP despite maximal brain pressure management, the use of an intraventricular monitoring device with the possibility of cerebrospinal fluid drainage is favourable. We present the method of intracranial catheter placement by means of an electromagnetic navigation techniqu

    Treating Displaced Distal Forearm Fractures in Children

    Get PDF
    Purpose:: Distal forearm fractures are among the most common fractures in children. In the past few years the option of percutaneous pinning has gained more attention in the treatment of unstable fractures. However, it remains unclear in which cases a fracture or its reduction should be considered unstable. Study Design:: In order to evaluate which type of fractures profit most from additional pinning after closed reduction, we performed a retrospective analysis of 225 consecutive cases using the recently published AO pediatric classification of long bone fractures. Results:: After closed reduction, position in the cast was lost in 23% of the cases. The proportion of unstable reductions was much higher in completely displaced fractures. The amount of dislocation was more important than the type of fracture according to the AO classification proposal. Conclusions:: Fully displaced fractures should always be reduced in a setting with pins immediately available. If anatomical reduction cannot be achieved, pinning is advocated. The AO proposal for pediatric long bone fracture classification could be a useful tool to render the diverse studies more comparable. However, the important feature of complete versus subtotal displacement is lackin

    Third ventriculostomy in a single pediatric surgical unit

    Get PDF
    Purpose: Endoscopic third ventriculostomy (ETV) is a successful method of treatment for obstructive hydrocephalus that has become popular over the last 20years. The purpose of this paper is to study the outcome of infants with obstructive hydrocephalus treated by ETV by a single surgeon and to evaluate the safety, reliability, and efficacy of this treatment. Methods: All data were collected retrospectively. Between July 1999 and June 2005, 14 children underwent an ETV. In one child, a second ETV was performed. The age of the eight female and six male patients at the time of ETV ranged from less than 1month up to 13years and 11months. The indication for an ETV was an obstructive hydrocephalus. Median follow-up period was 5years and 9months. The need of a further operation after ETV was defined as a failure of ETV. Results: In six patients, the first ETV was successful. In the remaining eight patients, there was a need for further treatment (ventriculoperitoneal shunt). Although the follow-up shunt failed in one patient, he was successfully treated by a second ETV. Conclusion: Our study suggests that ETV can be successfully done in a small pediatric unit, but with a lower success rate because of small caseload, and therefore, lower experience and routine of the surgeon. Therefore, we propose a centralization of patients to obtain a higher number of cases. We confirm that ETV is a safe, reliable, and efficient method with a better outcome in children than infant

    Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters

    No full text
    We have established a simulation model for phosphorus-doped silicon emitters using Fermi–Dirac statistics. Our model is based on a set of independently measured material parameters and on quantum mechanical calculations. In contrast to commonly applied models, which use Boltzmann statistics and apparent band-gap narrowing data, we use Fermi–Dirac statistics and theoretically derived band shifts, and therefore we account for the degeneracy effects on a physically sounder basis. This leads to unprecedented consistency and precision even at very high dopant densities. We also derive the hole surface recombination velocity parameter Spo by applying our model to a broad range of measurements of the emitter saturation current density. Despite small differences in oxide quality among various laboratories, Spo generally increases for all of them in a very similar manner at high surfacedoping densities Nsurf. Pyramidal texturing generally increases Spo by a factor of five. The frequently used forming gas anneal lowers Spo mainly in low-doped emitters, while an aluminumanneal(Al deposit followed by a heat cycle) lowers Spo at all Nsurf.P.P.A. is on a Postdoctoral Fellowship from the Australian Research Council ~ARC!. The Center for Photovoltaic Engineering is supported by ARC’s Special Research Centres Scheme. A.C. and M.K. also acknowledge funding by the ARC

    Characterization of molecular scores and gene expression signatures in primary breast cancer, local recurrences and brain metastases.

    Get PDF
    BACKGROUND Breast cancer is a leading cause of cancer-related death in women worldwide. Despite extensive studies in all areas of basic, clinical and applied research, accurate prognosis remains elusive, thus leading to overtreatment of many patients. Diagnosis could be improved by introducing multigene molecular scores in standard clinical practice. Several tests that work with formalin-fixed tissue have become routine. Molecular scores usually include several genes representing processes, response to oestrogens, progestogens and human epidermal growth factor receptor 2 (Her2), respectively, which are combined additively in single values. These multi-gene scores have the advantage of being more robust and reproducible than single-gene scores. Their utility may be further enhanced by combining them with classical diagnostic parameters. Here, we present an exploratory study comparing the RISK and research versions of Oncotype DX recurrence score (RS), Prosigna Risk of Recurrence (ROR) and EndoPredict (EP) with respect to their prognostic potential for ipsilateral recurrence and/or distant relapse in brain, and we compared the scores to the intrinsic subtypes based on PAM50. METHODS RNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tissue cores of primary tumours, local recurrences and brain metastases. Gene expression was measured on a NanoString nCounter Analysis System. Intrinsic subtypes and molecular scores were computed according to published literature and RISK, RS, ROR and EP were compared against each other and to the intrinsic subtypes Luminal A (lumA), Luminal B (lumB), Her2-enriched (Her2↑), Basal-like (basal), and Normal-like (normal) of PAM50. Local recurrences and brain metastases were compared to their corresponding primary tumours. RESULTS All four molecular scores were highly correlated. Highest correlations were observed among genes related to proliferation while lower correlations were found among oestrogen-related genes. The scores were significantly higher in primary tumours progressing to brain metastases as compared to recurrence-free primary tumours and primary tumours that relapsed as local recurrences. CONCLUSIONS RISK and ROR-P are prognostic for primary tumours metastasizing to the brain. All four scores, RISK, RS, EP and ROR-P failed to discriminate between primary tumours that remained recurrence-free and primary tumours relapsing as local recurrences

    Sex differences of vascular brain lesions in patients with atrial fibrillation.

    Get PDF
    OBJECTIVE To examine sex differences in prevalence, volume and distribution of vascular brain lesions on MRI among patients with atrial fibrillation (AF). METHODS In this cross-sectional analysis, we included 1743 patients with AF (27% women) from the multicentre Swiss Atrial Fibrillation study (SWISS-AF) with available baseline brain MRI. We compared presence and total volume of large non-cortical or cortical infarcts (LNCCIs), small non-cortical infarcts, microbleeds (MB) and white matter hyperintensities (WMH, Fazekas score ≄2 for moderate or severe degree) between men and women with multivariable logistic regression. We generated voxel-based probability maps to assess the anatomical distribution of lesions. RESULTS We found no strong evidence for an association of female sex with the prevalence of all ischaemic infarcts (LNCCI and SNCI combined; adjusted OR 0.86, 95% CI 0.67 to 1.09, p=0.22), MB (adjusted OR 0.91, 95% CI 0.68 to 1.21, p=0.52) and moderate or severe WMH (adjusted OR 1.15, 95% CI 0.90 to 1.48, p=0.27). However, total WMH volume was 17% larger among women than men (multivariable adjusted multiplicative effect 1.17, 95% CI 1.01 to 1.35; p=0.04). Lesion probability maps showed a right hemispheric preponderance of ischaemic infarcts in both men and women, while WMH were distributed symmetrically. CONCLUSION Women had higher white matter disease burden than men, while volume and prevalence of other lesions did not differ. Our findings highlight the importance of controlling risk factors for cerebral small vessel disease in patients with AF, especially among women

    Expression profiling with RNA from formalin-fixed, paraffin-embedded material

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular characterization of breast and other cancers by gene expression profiling has corroborated existing classifications and revealed novel subtypes. Most profiling studies are based on fresh frozen (FF) tumor material which is available only for a limited number of samples while thousands of tumor samples exist as formalin-fixed, paraffin-embedded (FFPE) blocks. Unfortunately, RNA derived of FFPE material is fragmented and chemically modified impairing expression measurements by standard procedures. Robust protocols for isolation of RNA from FFPE material suitable for stable and reproducible measurement of gene expression (e.g. by quantitative reverse transcriptase PCR, QPCR) remain a major challenge.</p> <p>Results</p> <p>We present a simple procedure for RNA isolation from FFPE material of diagnostic samples. The RNA is suitable for expression measurement by QPCR when used in combination with an optimized cDNA synthesis protocol and TaqMan assays specific for short amplicons. The FFPE derived RNA was compared to intact RNA isolated from the same tumors. Preliminary scores were computed from genes related to the ER response, HER2 signaling and proliferation. Correlation coefficients between intact and partially fragmented RNA from FFPE material were 0.83 to 0.97.</p> <p>Conclusion</p> <p>We developed a simple and robust method for isolating RNA from FFPE material. The RNA can be used for gene expression profiling. Expression measurements from several genes can be combined to robust scores representing the hormonal or the proliferation status of the tumor.</p

    Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event
    • 

    corecore