49 research outputs found

    Comparing the interobserver reproducibility of different regions of interest on multi-parametric renal magnetic resonance imaging in healthy volunteers, patients with heart failure and renal transplant recipients

    Get PDF
    Objective: To assess interobserver reproducibility of different regions of interest (ROIs) on multi-parametric renal MRI using commercially available software. Materials and methods: Healthy volunteers (HV), patients with heart failure (HF) and renal transplant recipients (Tx) were recruited. Localiser scans, T1 mapping and pseudo-continuous arterial spin labelling (pCASL) were performed. HV and Tx also underwent diffusion-weighted imaging to allow calculation of apparent diffusion coefficient (ADC). For T1, pCASL and ADC, ROIs were drawn for whole kidney (WK), cortex (Cx), user-defined representative cortex (rep-Cx) and medulla. Intraclass correlation coefficient (ICC) and coefficient of variation (CoV) were assessed. Results: Forty participants were included (10 HV, 10 HF and 20 Tx). The ICC for renal volume was 0.97 and CoV 6.5%. For T1 and ADC, WK, Cx, and rep-Cx were highly reproducible with ICC ≥ 0.76 and CoV < 5%. However, cortical pCASL results were more variable (ICC > 0.86, but CoV up to 14.2%). While reproducible, WK values were derived from a wide spread of data (ROI standard deviation 17% to 55% of the mean value for ADC and pCASL, respectively). Renal volume differed between groups (p < 0.001), while mean cortical T1 values were greater in Tx compared to HV (p = 0.009) and HF (p = 0.02). Medullary T1 values were also higher in Tx than HV (p = 0.03), while medullary pCASL values were significantly lower in Tx compared to HV and HF (p = 0.03 for both). Discussion: Kidney volume calculated by manually contouring a localiser scan was highly reproducible between observers and detected significant differences across patient groups. For T1, pCASL and ADC, Cx and rep-Cx ROIs are generally reproducible with advantages over WK values

    COVID-19 in Africa: care and protection for frontline healthcare workers

    Get PDF
    Medical staff caring for COVID-19 patients face mental stress, physical exhaustion, separation from families, stigma, and the pain of losing patients and colleagues. Many of them have acquired SARS-CoV-2 and some have died. In Africa, where the pandemic is escalating, there are major gaps in response capacity, especially in human resources and protective equipment. We examine these challenges and propose interventions to protect healthcare workers on the continent, drawing on articles identified on Medline (Pubmed) in a search on 24 March 2020. Global jostling means that supplies of personal protective equipment are limited in Africa. Even low-cost interventions such as facemasks for patients with a cough and water supplies for handwashing may be challenging, as is ‘physical distancing’ in overcrowded primary health care clinics. Without adequate protection, COVID-19 mortality may be high among healthcare workers and their family in Africa given limited critical care beds and difficulties in transporting ill healthcare workers from rural to urban care centres. Much can be done to protect healthcare workers, however. The continent has learnt invaluable lessons from Ebola and HIV control. HIV counselors and community healthcare workers are key resources, and could promote social distancing and related interventions, dispel myths, support healthcare workers, perform symptom screening and trace contacts. Staff motivation and retention may be enhanced through carefully managed risk ‘allowances’ or compensation. International support with personnel and protective equipment, especially from China, could turn the pandemic’s trajectory in Africa around. Telemedicine holds promise as it rationalises human resources and reduces patient contact and thus infection risks. Importantly, healthcare workers, using their authoritative voice, can promote effective COVID-19 policies and prioritization of their safety. Prioritizing healthcare workers for SARS-CoV-2 testing, hospital beds and targeted research, as well as ensuring that public figures and the population acknowledge the commitment of healthcare workers may help to maintain morale. Clearly there are multiple ways that international support and national commitment could help safeguard healthcare workers in Africa, essential for limiting the pandemic’s potentially devastating heath, socio-economic and security impacts on the continen

    A perspective on physical reservoir computing with nanomagnetic devices

    Get PDF
    Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable. One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm's requirements. The intrinsic non-volatility, non-linearity, and memory of spintronic devices make them appealing candidates for neuromorphic devices. Here we focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for computation with spintronic devices since they can provide the properties of non-linearity and memory. We review technologies and methods for developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used

    Planar organic spin valves using nanostructured Ni80Fe20 magnetic contacts

    Get PDF
    Planar organic spin valves were fabricated by evaporating organic semiconductor PTCDI-C13 onto pairs of patterned Ni80Fe20 magnetic nanowires separated by 120 nm. Control over the relative alignment of magnetisation in the nanowires was achieved by including a domain wall ‘nucleation pad’ at the end of one of the wires to ensure a large separation in magnetic switching fields. Switching behaviour was investigated by optical and X-ray magnetic imaging. Room temperature organic magnetoresistance of −0.35% was observed, which is large compared to that achieved in vertical spin valves with similar materials. We attribute the enhanced performance of the planar geometry to the deposition of the semiconductor on top of the metal, which improves the quality of metal–semiconductor interfaces compared to the metal-on-semiconductor interfaces in vertical spin valve

    Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?

    Get PDF
    The UK has been one of the few countries that has successfully decoupled final energy consumption from economic growth over the past 15 years. This study investigates the drivers of final energy consumption in the UK productive sectors between 1997 and 2013 using a decomposition analysis that incorporates two novel features. Firstly, it investigates to what extent changes in thermodynamic efficiency have contributed to overall changes in sectoral energy intensities. Secondly, it analyses how much of the structural change in the UK economy is driven by the offshoring of energy-intensive production overseas. The results show that energy intensity reductions are the strongest factor reducing energy consumption. However, only a third of the energy savings from energy intensity reductions can be attributed to reductions in thermodynamic efficiency with re- ductions in the exergy intensity of production making up the reminder. In addition the majority of energy savings from structural change are a result of offshoring, which constitutes the second biggest factor reducing energy consumption. In recent years the contributions of all decomposition factors have been declining with very little change in energy consumption after 2009. This suggests that a return to the strong reductions in energy consumption observed between 2001 and 2009 in the UK productive sectors should not be taken for granted. Given that further reductions in UK final energy consumption are needed to achieve global targets for climate change mitigation, additional policy interventions are needed. Such policies should adopt a holistic approach, taking into account all sectors in the UK economy as well as the relationship between the structural change in the UK and in the global supply chains delivering the goods and service for consumption and investment in the UK

    A physical supply-use table framework for energy analysis on the energy conversion chain

    Get PDF
    In response to the oil crises of the 1970s, energy accounting experienced a revolution and became the much broader field of energy analysis, in part by expanding along the energy conversion chain from primary and final energy to useful energy and energy services, which satisfy human needs. After evolution and specialization, the field of energy analysis today addresses topics along the entire energy conversion chain, including energy conversion systems, energy resources, carbon emissions, and the role of energy services in promoting human well-being and development. And the expanded field would benefit from a common analysis framework that provides data structure uniformity and methodological consistency. Building upon recent advances in related fields, we propose a physical supply-use table energy analysis framework consisting of four matrices from which the input-output structure of an energy conversion chain can be determined and the effects of changes in final demand can be estimated. Real-world examples demonstrate the physical supply-use table framework via investigation of energy analysis questions for a United Kingdom energy conversion chain. The physical supply use table framework has two key methodological advances over the building blocks that precede it, namely extending a common energy analysis framework through to energy services and application of physical supply-use tables to both energy and exergy analysis. The methodological advances enable the following first-time contributions to the literature: (1) performing energy and exergy analyses on an energy conversion chain using physical supply-use table matrices comprised of disaggregated products in physical units when the last stage is any of final energy, useful energy, or energy services; (2) performing structural path analysis on an energy conversion chain; and (3) developing and utilizing a matrix approach to inhomogeneous units. The framework spans the entire energy conversion chain and is suitable for many sub-fields of energy analysis, including net energy analysis, societal energy analysis, human needs and well-being, and structural path analysis, all of which are explored in this paper

    Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics

    Get PDF
    One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species

    Climate change effects on people’s livelihood

    Get PDF
    Generally climate is defined as the long-term average weather conditions of a particular place, region, or the world. Key climate variables include surface conditions such as temperature, precipitation, and wind. The Intergovernmental Panel on Climate Change (IPCC) broadly defined climate change as any change in the state of climate which persists for extended periods, usually for decades or longer (Allwood et al. 2014). Climate change may occur due to nature’s both internal and external processes. External process involves anthropogenic emission of greenhouse gases to the atmosphere, and volcanic eruptions. The United Nations Framework Convention on Climate Change (UNFCCC) made a distinction between climate change attributable to human contribution to atmospheric composition and natural climate variability. In its Article 1, the UNFCCC defines climate change as “a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods” (United Nations 1992, p. 7)
    corecore