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ABSTRACT

Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific
field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable.
One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm’s
requirements. The intrinsic non-volatility, non-linearity, and memory of spintronic devices make them appealing candidates for neuromor-
phic devices. Here, we focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for compu-
tation with spintronic devices since they can provide the properties of non-linearity and memory. We review technologies and methods for
developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0119040

I. INTRODUCTION

Neural networks are widely used across various sectors to per-
form challenging data analysis tasks, but the high energy cost of train-
ing increasingly complex models is an escalating problem. More
specifically, for training a state-of-the-art model, a Transformer with
213M parameters, the CO2 emissions were 626 155 lbs (including neu-
ral architecture search), while driving a car (average fuel consump-
tion), for one lifetime, the CO2 emissions were only 126 000 lbs.1 One
solution to the energy issue is to create new hardware platforms for
neuromorphic computation using functional materials that intrinsi-
cally perform the required computation, potentially achieving greater
efficiency than conventional CMOS approaches that merely simulate
these. Recurrent neural networks (RNNs) are inspired by the high
interconnectivity of biological systems and are a potent tool for tasks
involving complex temporal data sequences. However, their temporal
interconnectivity requires complex training methods. Such methods
are computationally expensive and challenging to implement on hard-
ware. The reservoir computing (RC) paradigm provides a solution
using an RNN with fixed, random synaptic weights (the reservoir),

which transforms inputs into higher dimensional representations
before passing them to a single feed-forward output layer. The weights
of this output layer can be calculated by minimizing an error function
defined, for instance, as the squared difference between the desired
and the predicted output. The output layer contains no temporal
dependencies, and thus, training becomes relatively trivial. Ultimately,
the reservoir does not need to be a neural network; it can be any suit-
able non-linear system that exhibits hysteresis. RC is particularly well-
suited to neuromorphic hardware-based implementations. Since the
learning process does not interfere with the reservoir dynamics, we
may use any material device that provides appropriately complex
dynamics and memory in the place of a neural network reservoir.

There are explorative reservoirs from different technologies, includ-
ing photonic,2mechanical,3 and memristive4 systems. Nanomagnetic sys-
tems have properties that make them particularly well-suited to act as
reservoirs. For example, the magnetic hysteresis loop depicted in Fig. 1
shows a non-linear response (the net magnetization) to a stimulus (the
applied field). Bistable remanent magnetization states, shown schemati-
cally in Fig. 1(a), can be the basis for the system’s memory. Furthermore,
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in extended systems, interactions between moments give rise to a wealth
of magnetization textures with complex dynamics that provide a rich
playground to explore novel devices. Some example textures are shown in
Figs. 1(b)–1(d), showing magnetic domain wall (DW), skyrmion, and
artificial spin ice (ASI) systems. Short-range exchange and longer-range
magnetostatic interactions offer in materia pathways to creating reservoirs
with multiple physical nodes without the need for complex material syn-
apses between nodes. The historical use of magnetic materials in hard-
disk drives, sensors, and random access memories means integration with
CMOS and techniques for reading (e.g., magnetoresistance effects) and
writing data (e.g., magnetic fields and spin torque effects) are also well-
established.

In this perspective, we will first review the approaches for creat-
ing in materia reservoirs using nanomagnetic materials and their vari-
ous strengths and weaknesses. We will discuss the most common
training methods that map their physical behaviors into meaningful
data outputs. Next, we will discuss simulation tools that can assist in
exploring the feasibility of reservoir computing with different magnetic
systems and the characterization methods and benchmark problems
commonly used to establish computational capability. Finally, we pre-
sent some key challenges in the field and potential approaches to
address these.

II. MATERIALS AND DEVICES

Due to their attractive properties, several nanomagnetic systems
have been deemed suitable as reservoirs. These systems include spin
torque oscillators (STOs),5–9 spin ice arrays,10–15 skyrmion tex-
tures,9,16,17 super-paramagnetic arrays,18 magnonic systems,19 and
domain wall devices.20,21 Most studies are in simulations, although
some demonstrations of RC with real devices have been performed,
providing important evidence of real-world feasibility.5,15,19

In general, nanomagnetic reservoirs can be classified based on
several characteristics (e.g., energy consumption, operating speed, and
device size). Here, we introduce a taxonomy that classifies proposed
devices by (a) input/output dimensionality (IOD) and (b) dynamical
response (DR) (Fig. 2).

For IOD, RC requires multiple outputs from the reservoir (i.e.,
simultaneous measures of reservoir state) and benefits from multiple,
simultaneous data inputs. Many devices proposed for use in RC are

simple dynamical nodes with only a single input and output (IOD-
1D). To use IOD-1D as reservoirs, we must expand the dimensionality
of input and output data by using time-multiplexing techniques,22

an approach often referred to as “delay line” RC. However, other
proposed devices consist of many spatially distributed, interacting
elements/regions. These naturally possess N dimensional state vectors
and, thus, offer an in materia pathway to defining multiple input and
output dimensions (IOD-N). Reservoirs containing multiple non-
interacting devices can also be powerful, providing that each device
offers a different non-linear mapping of input signals.8

For DR, many proposed magnetic reservoirs exploit the damped,
oscillatory motion of individual magnetic moments, as described by
the Landau–Lifshitz–Gilbert (LLG) equation of motion (DR-LLG).
These dynamics have high MHz–THz frequencies and ns decay times
for ferromagnetic materials, making them well-suited to high-speed
data processing applications. RC is also ideal for real-time signal proc-
essing, where reservoir timescales must match external signals with
low or high frequencies. However, as the dynamics of DR-LLG sys-
tems occur on nanosecond timescales, they are too fast for many real-
time tasks; one must use external electronics to “speed-up” data input
or improve long-term dependencies via delay lines. Effectively, we
treat the magnetic devices as non-linear activation functions with
short-term temporal dependencies.6

Other magnetic devices do not naturally relax their state without
applied stimuli; external clocking stimuli determine the timescales of
these dynamically driven (DR-D) systems. By choosing the clock fre-
quency, these systems can operate at any timescale longer than

FIG. 1. Magnetic hysteresis loop and complex magnetic textures. (a) Bistable hys-
teresis loop where the applied magnetic field (H) controls the orientation of the
magnetization (M). (b)–(d) Examples of complex magnetic textures are domain
walls, skyrmion, and artificial spin ice.

FIG. 2. Classification of magnetic reservoir proposals by input/output dimensionality
(IOD) and Dynamical Response (DR). IOD: IOD-1D—single dynamical node and
IOD-N—multiple spatial dimensions. DR: DR-D—driven by external clock stimulus,
DR-T—dynamics governed by thermal activation/relaxation, and DR-LLG—dynamics
governed by LLG equation. References in bold red text are experimental demonstra-
tions; all other references are simulation-based demonstrations. Red arrows repre-
sent systems where the state-of-the-art is an IOD-1D demonstration, but there are
clear in materia approaches available to create IOD-N reservoirs. Key: STOs—spin
torque oscillators, DWO—domain wall oscillators, SkyrOsc—skyrmion oscillator,
SPE—super-paramagnet ensemble, NRE—nanoring ensemble, Magnonic—mag-
nonic reservoir, SkyTex—skyrmion texture, and ASI—artificial spin ice.
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intrinsic magnetization dynamics. Therefore, they are naturally well-
suited to real-time data analysis but may be less energy efficient than
DR-LLG devices. A final class of reservoirs directly exploits thermally
activated magnetization dynamics to provide transitions between mag-
netic states (DR-T). These are interesting as they directly exploit aggre-
gated thermal effects to increase energy efficiency, whereas, in most
device proposals, thermal effects introduce stochasticity, reducing per-
formance in computational tasks. Furthermore, as the timescales of
thermal activation can be changed dramatically (down to �tens of
nanoseconds23) by changing the size of the systems’ energy barriers, it
should be possible to tune these systems dynamics to be compatible
with a variety of real-time tasks. However, their stability to variations
in operating temperature requires careful exploration.

In Secs. IIA–IID, we briefly review the wide range of device pro-
posals within this framework and discuss their other potential merits
and limitations.

A. Nanomagnetic oscillators

Spin torque oscillators24 (STOs) (IOD-1D, DR-LLG) use the
same magnetic tunnel junction (MTJ) technology that forms the basis
of contemporary magnetic random-access memory (MRAM) device.25

At the most basic level, MTJs consist of two thin ferromagnetic layers
separated by a thin insulating barrier in a “spin valve” configuration.
One of the ferromagnetic layers is free to change its magnetization
direction (free layer). The other is “pinned” into a fixed state (pinned
layer) by an adjacent antiferromagnetic layer. Passing a DC electrical
current through the multilayer excites oscillation of the magnetization
direction of the free layer due to spin torque effects,26,27 with frequen-
cies in the range hundreds of MHz to tens of GHz, depending on the
details of the oscillator’s design and stimuli applied to it. When the
free layer magnetization oscillates, it produces oscillations in the elec-
trical resistance of the MTJ via the tunnel magnetoresistance (TMR)
effect. TMR can be detected as voltage signals with amplitudes as large
as tens of mV.28 The amplitude of STO oscillations varies non-linearly
with current and typically decays over timescales of�hundreds of ns.5

Torrejon et al.5 demonstrated RC experimentally using a single
sub-micrometer STO device using the time-multiplexed approach of
Appletant et al.22 Input signals are given to the STO by modulating
the amplitude of the DC driving current, with the readout being the
power output of the STO. Using this approach, the authors achieved
state-of-the-art performance when classifying spoken digits from the
TI-46 database.29 Alternative input and output approaches (e.g., fre-
quency modulated input and phase modulated output) can also create
richer reservoir transformations and improve performance in tasks.7

STOs have many attractive properties. Foremost among these is
that MTJs are a well-established commercial technology and are fully
compatible with conventional CMOS platforms, providing a clear
path to the realization of devices. Furthermore, they can be scaled
down substantially from the sub-micrometer dimensions studied by
Torrejon et al. to �10nm, creating device designs that are both dense
and energy efficient (�1 W per STO).

While recent demonstrations have focused on time-multiplexed
RC schemes, interconnections between STOs allow them to couple to
each other,30,31 potentially facilitating N-dimensional reservoirs.
Current approaches to neuromorphic computation with STOs have
used external electrical interconnects to achieve this.32 Still, STOs can

interact/synchronize via magnetic interactions,31,33 allowing for sim-
pler and more elegant device designs.

Other types of magnetic oscillators can also be used as reservoirs.
Ababei et al. used simulations to show that a single magnetic domain
wall (DW) oscillating within a geometrically defined potential well in a
nickel nanowire can create a reservoir capable of classifying a variety of
different signals21 (IOD-1D and DR-LLG). In this approach, the DW’s
dynamics are dictated by device geometry and, therefore, should be
highly tunable. Furthermore, DWs naturally produce monopole-like
magnetic fields,34,35 allowing inter-device interactions to expand reser-
voir dimensionality. In a similar modeling study, Jiang et al. use the
dynamics of a single magnetic skyrmion (i.e., a topologically protected
“bubble” of non-uniform magnetization) within a geometrically defined
potential to make an effective reservoir9 (IOD-1D and DR-LLG).

B. Magnonic systems

When driven at microwave frequencies, magnetic materials
exhibit phase-coherent collective excitations known as spin waves
(SWs), the quasiparticle of which is the magnon. The frequencies of
SWs depend strongly on both material properties and induced mag-
netic anisotropies imposed by the system’s geometry. The magnetic
damping parameter of a material quantifies how efficiently SWs dissi-
pate into the lattice and must be minimized by using materials such as
Permalloy (NiFe) or yttrium iron garnet (YIG)36 to reduce losses.
Boundaries and interfaces within a material allow for complex SW
interference patterns to form, akin to reservoir work involving the pat-
tern of water waves in a bucket.37 This high degree of tunability pro-
vides a rich parameter space for useful computation. At the same time,
the intrinsic spatial variation of interference effects makes spin waves
an ideal phenomenon for developing IOD-N reservoirs. As these
approaches directly exploit magnetization dynamics, they all have class
DR-LLG.

Papp et al.38 used micromagnetic simulations to characterize the
computational potential of a simulated SW reservoir based on a film
of YIG (IOD-N, DR-LLG) using task agnostic metrics. Modulating an
RF excitation from a waveguide on one side of the film provides the
input. The output is the time-averaged signal response at points across
the system. Patterned dots of material with perpendicular magnetic
anisotropy (PMA) on the surface of the YIG provided a non-uniform
magnetic field, which locally altered the SW dispersion, resulting in a
non-linear response. The system’s response strongly depends on the
regime at which the SWs were driven. For example, too high an input
excitation would drive the system toward chaos. Nakane et al. suggest
that magnetoelastic effects in multiferroic systems could provide
energy-efficient excitation of spin wave reservoirs.39–41

In another simulation-based study, Dale et al. explored the limits
of magnonic RC42 by considering thin films of Co, Fe, and Ni with
�100nm lateral dimensions (IOD-N and DR-LLG). These were split
into a regular grid of up to 900 5 � 5nm2 nodes, which were excited
with local magnetic fields for data input and with the local 3D magne-
tization state of each node providing output. SWs reflect from edges
forming interference patterns that provide a complex, transient trans-
formation of input data. For larger numbers of nodes at 0K, the sys-
tem achieves impressive task-agnostic metric scores (see Sec. V) and
an error of about 1% for a NARMA-30 task. As expected, the intro-
duction of temperature to the simulation drastically reduced perfor-
mance. Experimental realization of an equivalent device would be
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highly challenging, and cooling devices to cryogenic temperatures are
unlikely to be energy efficient. Hence, further work is required to
explore device designs that are feasible to fabricate and robust to
higher temperatures.

Physical devices based on SWs are challenging to realize, partly
due to devices operating at non-zero temperatures, which can alter
magnon behavior.43 Watt et al. experimentally demonstrated an SW-
based system with a time-multiplexed active ring resonator
approach19,44,45 (IOD-1D and DR-LLG). The system consists of two
antennas on each side of a strip of YIG: one to excite SWs and the
other to detect them. The amplified microwave output signal is fed
back into the input antenna to shift the phase of the frequencies within
the YIG. An increase in gain stabilizes the SWs, until the threshold at
which chaotic behavior occurs. This time-delayed transition to a
steady-state condition acts as a fading memory within the system with-
out needing external time-delayed input.44

Magnonic systems provide a potential platform for fast, low-power
reservoir computing. However, they require high-quality growth of insu-
lating magnetic films such as YIG and may show the best performance
at low temperatures. Further work, particularly on experimental SW-
based devices, is needed to explore their potential fully.

C. Artificial spin ice systems

Artificial spin ice (ASI) arrays consist of magnetically bistable
nanoscale islands of soft magnetic materials (e.g., permalloy) arranged
into tightly spaced, periodic lattices of various geometries.46

Magnetostatic fields created by the elements in these lattices mean that
any given nanomagnet’s free energy depends strongly on its magnet-
ization’s direction relative to its neighbors. Thus, the physics of ASIs is
emergent, with complex collective behaviors deriving from simple
interactions at an array’s vertices. They provide a rich playground to
explore various physical phenomena, including phase transitions,
emergent magnetic monopoles, and magnetic frustration. Dynamics
in these experiments are typically driven by applying external mag-
netic fields or directly heating the arrays. Studies have explored a wide
range of geometries, including, for example, square lattices,47 kagome
lattices,48 and pinwheel lattices.49 Fully connected ASIs can also be cre-
ated where exchange interactions mediate interactions between verti-
ces, and switching occurs by the propagation of DWs.50

ASIs are particularly effective systems for RC. They consist of
large numbers of spatially distributed elements that interact strongly
with their neighbors without the need for layers of interconnects,
offering a natural platform for realizing IOD-N reservoirs. Their com-
plex and highly tunable dynamics (e.g., via their large geometric phase
space) promise a wealth of non-linear transforms of input data. Their
dynamics are typically “clocked” by external stimuli, making them
examples of DR-D systems.

Initial simulation-based studies by Jensen et al. show that the
large binary state space of ASIs can be fully exploited computation-
ally10 and that even subsampled representations of the magnetic state
retain substantial computational power when used as outputs11 (IOD-
N and DR-D). Other simulation studies have demonstrated that data
can be input using the configurations of individual, or small groups, of
islands.12–14 These studies provide strong evidence that the large num-
bers of interacting, binary degrees of freedom in ASIs is a genuine asset
for creating IOD-N RC platforms.

There are substantial challenges to experimentally demonstrating
the computational abilities of ASIs. While it is possible to envision
ASIs constructed from dense arrays of individually addressable MTJs
that would facilitate data input and output, the fabrication of such
devices is beyond what is achievable in most research laboratories.
Thus, alternative methods must be used to determine how the micro-
states of ASIs vary when subjected to complex field sequences.
Gartside et al. have used ferromagnetic resonance measurements to
“fingerprint” the microstates of an ASI.15 Their approach led to the
first experimental demonstration of RC using an ASI to perform signal
reconstruction and time series prediction tasks (IOD-N and DR-D).
Globally applied magnetic fields were used to “clock” the ASI-based
reservoirs. Still, such fields would likely be energy intensive for device-
level implementations, and alternative clocking methods, e.g., spin or
spin–orbit torque effects, will be necessary.

While the potential strength of ASIs as reservoirs stems from
interactions between elements, Welbourne et al. have shown that col-
lections of magnetic islands are capable of computation even in the
non-interacting limit.18 In a simulation study, the authors used ensem-
bles of voltage-controlled super-paramagnetic islands as time-
multiplexed reservoirs, demonstrating high performance in both cha-
otic series prediction and spoken digit recognition tasks (IOD-1D and
DR-T). Energy consumption was estimated to be �24 fJ per input,
which makes the proposed devices attractive for edge-computing
applications where low power consumption is vital. However, RC sys-
tems contain multiple components beyond the reservoir material itself.
Further research is needed to understand how the total power con-
sumption is related to that of the reservoir itself.

D. Skyrmion and domain wall ensembles

Magnetic nanostructures can support a variety of stable, non-
uniformmagnetization textures. Examples of such textures are domain
walls and magnetic skyrmions that exhibit complex dynamics and
strong interactions when placed in close proximity.

Skyrmions are topologically protected bubble-like magnetization
textures stabilized in magnetic materials that exhibit strong
Dzyaloshinskii–Moriya interactions.51 These can be found in single
crystal bulk magnetic materials with non-centrosymmetric lattices
(e.g., MnSi52) or in thin film systems that lack inversion symmetry
(e.g., Pt/Co/Ir multilayers53). Skyrmions can be displaced at relatively
low current densities using spin–orbit torques and produce unique
electrical signatures via the topological Hall effect.51 In extended sys-
tems, skyrmion textures/fabrics can be formed; these interpolate
between particle-like individual skyrmions and complex domain struc-
tures bounded by chiral domain walls.

Pinna et al. have studied the feasibility of reservoir computing
with skyrmion textures using micromagnetic simulations16 (IOD-N
and DR-LLG). These were excited using spin torque effects by passing
current between two electrical contacts. The readout could be either (i)
a time-multiplexed sampling of the device’s anisotropic magnetoresis-
tance (AMR) or (ii) multiple spatially resolved samples of the textures’
magnetization configurations. The authors showed that the device
could classify sine and square waves within random sequences, pro-
vided that the dynamics of the input signals were well-matched to
those of the skyrmions dynamics, which were in the GHz regime.
However, there are a variety of hurdles still to be overcome for experi-
mental realizations. Chief among these is that for temperatures above
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T¼ 100K, thermal noise obscures the anisotropic magnetoresistance
(AMR) signals,16 indicating a need for alternative readout
mechanisms.

Dawidek et al. have proposed an alternative reservoir design that
exploits stochastic interactions between domain walls in a patterned
array of interconnected, micron-scale Ni80Fe20 rings.

20 At remanence,
each ring in the array typically contained two 180 DWs, which could
be driven continuously around the rings’ tracks by applying rotating
magnetic fields.54 Stochastic interactions between DWs at the array’s
junctions led to both mechanisms for DWs being annihilated from the
array, and new DW pairs being nucleated, with the balance of these
mechanisms depending strongly on the rotating amplitude of the
applied field. Thus, the array exhibited a field-dependent emergent
response similar to that observed in ASIs. Averaging magnetic behav-
ior over many rings transformed the individual rings’ stochastic
response into a rich, non-linear, and deterministic aggregate response.

Dawidek et al. first used a range of experimental techniques to
demonstrate that the ring arrays had the basic physical properties
required for reservoir computing. They then used a phenomenological
model of their dynamics to demonstrate the classification of digits
from the TI-46 database of spoken digits via a time-multiplexed
approach, with data being input to the array using the amplitude of a
continuously rotating applied field54,55 (IOD-1D and DR-D). A recent
study by the same team has provided an experimental demonstration
of RC with an electrically contacted ring array,56 where AMRmeasure-
ments probed the states of the rings.

Interconnected ring arrays have several features that make them
highly attractive as reservoirs. Like ASIs, they have numerous geomet-
rical parameters that could tune their dynamic responses.
Furthermore, as they consist of many interacting magnetic elements,
they offer obvious routes to creating IOD-N reservoirs. However, data
input by rotating magnetic fields is unlikely to be energy efficient, and
alternative approaches exploiting, e.g., spin–orbit torques, will need to
be explored.57

III. RESERVOIR TRAINING METHODS

In Sec. II, we covered a range of nanomagnetic systems suitable
for reservoir computing. Here, we discuss how to train the output layer
that receives the reservoir activity to solve various tasks. We present
the most popular reservoir training method, known as ridge regres-
sion, which requires accumulating all training data and training the
reservoir in one step. We also mention a recent technique applicable
in an “online learning” setup, where the algorithm progressively adapts
its parameters as new data are collected. This technique enables the
reservoir to learn tasks sequentially, which may allow its usage in life-
long learning situations.

Assume that we provide the reservoir with an M-dimensional
input signal siðtÞ, where i is an index on the Ndata different inputs that
we can give to the reservoir. Then, xiðtÞ is an N-dimensional variable
that represents measurements in the physical reservoir (or in the tradi-
tional neural network setting the activities of the reservoir neurons) as a
response to input signal siðtÞ. For each datapoint i, we wish to find
common parameters (weights) Wout, where Wout is a matrix with
dimensions K� N, so that WoutxiðtÞ ¼ yiðtÞ, with yiðtÞ being a
K-dimensional desirable signal output. We then construct X and ~Y
matrices of dimensions N� Ndata and K� Ndata, respectively, obtained
through concatenation (across columns) of the measurements (neuron

activities) and the desired outputs. We assume K ¼ 1, meaning we have
one output. To calculate the parameters Wout, we minimize the error
function E of the system’s output,

E ¼ WoutX � ~Y
� �

WoutX � ~Y
� �T

þ bWoutW
T
out; (1)

where b is the scaling factor of a term known as the L2 penalty, which
penalizes large weights. The method is known as ridge regression and
is the most commonly used in the application of reservoir computing.
We can find a closed-form solution to this minimization problem by
setting the gradient of E equal to zero,

Wout ¼ ~YXT XXT þ bIN
� ��1

: (2)

The solution holds for K > 1 since we independently minimize every
output. While attractive for its simplicity, the ridge regression algo-
rithm is not appropriate for scenarios where the training dataset is not
fixed a priori but increases over time. In particular, robotics applica-
tions, reinforcement learning, and lifelong learning scenarios require
algorithms that continuously update their parameters as new data
become available. Moreover, solving Eq. (2) can be challenging when
the matrix to be inverted is very large or rank deficient.

For this reason, previous research has also adapted iterative learn-
ing algorithms to minimize a generic error function, which is not con-
strained to the mean-squared error. Given an arbitrary cost function
E, the output weights are optimized iteratively through gradient
descent,

Woutðnþ 1Þ ¼ WoutðnÞ � grWout
E; (3)

where n is the iteration number. Alternatively, we can use complex
gradient descent methods such as RMSProp or Adam,58,59 which
exploits the first- and second-order momentum of the derivatives.
Such iterative algorithms are known as onlinemethods.

More recently, a sparse online learning algorithm (SpaRCe) has
been proposed.60 SpaRCe introduces one threshold per neuron, which
is learnable by minimizing the same cost function for the output
weights. SpaRCe boosts the performance of online learning in reser-
voirs applied to classification problems while alleviating the issue of
catastrophic forgetting. The latter is a fundamental problem in
machine learning; new knowledge overrides older memories when the
algorithm learns tasks sequentially. Catastrophic forgetting imposes
additional challenges when considering the application of machine
learning in lifelong learning scenarios and is a particularly significant
problem for recurrent networks. SpaRCe performs exceptionally well
in cases where the reservoir measurements are highly correlated. Since
this method does not affect the reservoir dynamics, it synergizes well
with in materia reservoirs. Although more time-consuming than the
one-step regression, it may enable functionalities that are not possible
otherwise, as it improves performance over standard “online methods”
in classification problems.

Despite the recent advantages in training methods, and while we
consider reservoir computing a promising paradigm for in materia
computing, we do not expect that single reservoirs will be able to com-
pete with more complex structures in general. However, it is possible
to achieve competitive performance for specific problems. In a com-
parative study60 between hierarchical reservoirs and a well-established
recurrent network architecture known as long sort-term memory
(LSTM) with the same number of learnable parameters, the reservoirs
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achieved better performance in the permuted sequential MNIST task.
The reservoir learning rule does not need to unravel dependencies in
time when finding gradients, reducing the algorithmic complexity by
factor T compared to the LSTM, where T is the length of input signals
(here 784). These advantages in terms of complexity are expected to
translate to reduced energy costs.

IV. SIMULATION TOOLS

Many tools are available to model nanoscale magnetic systems,
ranging from general-purpose, full-physics simulators to high-level, spe-
cial-purpose phenomenological models. These tools are essential to
developing magnetic RC platforms; experimental demonstrations
require challenging device fabrication and subsequent high-throughput
characterization of the devices’ responses to large quantities of input
data. Simulation-based approaches are attractive for scoping functional-
ity when combining these challenges with the wealth of systems and
phenomena useful for RC.

However, simulations of RC also have their challenges. RC
requires modeled devices to receive extended streams of input stimuli
over timescales at a high computational expense. Furthermore, there is
usually a trade-off between the accuracy with which the simulation
approach replicates physical phenomena (e.g., magnetization dynam-
ics, the effects of temperature, and materials defects) and their compu-
tational cost. We will briefly review the different simulation
approaches used to model RC in magnetic materials and discuss where
they are best applied.

A. General purpose physical simulators

General-purpose physical simulators are powerful modeling soft-
ware packages that can model a diverse range of nanomagnetic
systems.

Atomistic solvers, such as VAMPIRE,61 allow atomic scale simula-
tion of magnetic materials. Magnetic moments are assumed to be
localized to atomic sites, and their dynamics are modeled classically
via the LLG equation. Modeling materials with this exquisite fidelity
allow physically accurate simulations of thermal effects, defects, inter-
facial interactions, and non-uniform spin textures but at a very high
computational cost; it is prohibitively costly to simulate devices with
dimensions >100nm. Consequently, atomistic models are generally
poorly suited to exploring RC unless the systems in question are
smaller than those we could typically study experimentally.42

Micromagnetic solvers, such as OOMMF,62 NMag,63 and
MUMAX3,64 model magnetization as a continuous vector field MðrÞ,
using finite difference or finite element numerical methods. Typically,
a model is discretized into individual cells smaller than the exchange
length (i.e., the characteristic length scale of a domain wall). Within
these cells, the magnetization is considered to be uniform. Cells are
usually a few nanometers in size and, thus, represent the magnetic
moments of several hundred atoms each. Similar to atomistic solvers,
the classical LLG equation models dynamics. Thermal effects may be
introduced by including a thermal noise term, resulting in a Langevin
thermostat for the system.65 Since we assume that each cell has a fixed
magnetic moment, this approach is limited to temperatures away from
the Curie temperature, where we expect large fluctuations in the length
of the moment.

The cells in micromagnetic approaches are typically two orders
of magnitude larger than those in atomistic simulations. Therefore,

they are substantially less computationally expensive to run. Systems
with lateral dimensions �lm are easily accessible, especially when
using GPU-accelerated packages such as MUMAX3. While these can be
used to model RC in modestly sized systems,16,21 the sheer amount of
input data required for training can present computational challenges.
They are also poorly suited to simulating large systems such as large
ASIs or interconnected ring ensembles. Micromagnetic simulations
are often best suited to validating the outputs of higher level simulators
or training fast, machine learning-based models of system behavior.66

B. Special-purpose phenomenological simulators

The limited applicability of general-purpose simulators to model-
ing RC stems from many degrees of freedom they must model.
However, simulators specialized to systems of a given class can
describe the basic physical behaviors with substantially fewer degrees
of freedom.

For example, each island in a typical ASI would consist of �2000
cells with 2 degrees of freedom each if simulated within a micromag-
netic framework. At a phenomenological level, it could be represented
by a single bistable vector within an Ising model. The GPU-
accelerated flatspin simulator67 takes this approach. The simulator has
been designed to simulate the dynamics of ASIs as collections of bista-
ble nano-magnets arranged on a lattice, approximated as point dipoles
interacting through dipole–dipole coupling. With these approxima-
tions, it is possible to model systems comprised of millions of islands.
Model predictions were validated against experimental results and
other models and allowed simulations demonstrating the applicability
of ASIs to RC with modest computational costs.10

RingSim,20,68 a simulator designed to predict the behaviors of
interconnected nanoring ensembles (NRE), takes a similar phenome-
nological approach. The simulator follows agent-based modeling prin-
ciples: the active agents are domain walls that are instanced into the
model and interact stochastically with a rotating field and other DWs
situated in neighboring rings. With this model, it was possible to dem-
onstrate the feasibility of performing RC with a system that would be
entirely inaccessible using standard micromagnetic approaches.20,68

Simple phenomenological models have been used to model a
range of other systems, including STOs,8 DWOscillators,21 and super-
paramagnet ensembles (SPEs).18 These models are similar in that they
sacrifice the detail and accuracy of their descriptions of physics to
reduce computational expense. These are appropriate tradeoffs for
studies aiming to demonstrate the basic feasibility of RC with a given
system as a stepping stone to experimental studies; even predictions
from highly detailed atomistic or micromagnetic models are expected
to show some variance from real-world devices.

V. CHARACTERIZATION BEYOND BENCHMARK TASKS

The suitability of nanomagnetic systems for RC is usually estab-
lished by performing standard benchmark tasks such as time series
prediction or speech recognition (for a review of some key bench-
marks, see the supplementary material). Evaluating reservoirs in this
way provides limited characterization; different tasks require different
computational properties. Thus, strong performance in a single task
does neither guarantee broader usefulness as a reservoir nor scalability
to more complex problems.

In principle, one may achieve a better understanding by measur-
ing task-agnostic reservoir metrics, which characterize a reservoir’s
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computational properties beyond specific benchmarks. Three com-
monly used metrics are kernel rank (KR),69 generalization rank
(GR),69 and linear memory capacity (MC).70,71 KR measures the abil-
ity of a reservoir to separate different inputs to different reservoir
states. GR is the ability of a reservoir to generalize similar inputs to the
same reservoir states, and MC is the amount of linear memory within
the system. Other metrics have also been proposed,72 and careful
research will be required to establish which groupings offer the most
informative characterizations of a reservoir’s computational
properties.

The optimal values of metrics are highly task-dependent. For
example, a system with a high GR is susceptible to noisy inputs,
whereas a low GR is less sensitive. Depending on the task, these may
reflect a desired or undesired property; a noisy input would benefit
from a low GR, but a precise and sensitive input would benefit from a
high GR. Nonetheless, metrics knowledge can help optimize reservoir
design for a specific problem. For instance, if a task requires a particu-
lar memory length, knowing which device designs provide the appro-
priate timescales would lead to a more efficient design process than
fabricating several reservoirs and testing them on the specific task.

A step in this direction is CHARC,73 a framework for exploring
the behavior spaces of families of dynamical systems. Traditional
search-based methods search for reasonable solutions to a given prob-
lem. Instead, CHARC explores the entire behavior space to character-
ize how well a given set of systems (such as the nanomagnetic systems
in this paper) exhibit various dynamical properties usable for solving
specific problems. CHARC defines the space of behaviors by a set of n
user-supplied metrics that define an n-dimensional behavior space.

It then explores the input parameters to determine the range of
behaviors accessible in this space. Using a range is more appropriate
for characterizing a system’s overall potential than optimizing the
parameters for some specific behavior. CHARC uses a novelty search
algorithm,74,75 an evolutionary algorithm purely explorative, to find
sets of input parameters that result in relatively uniformly distributed
behaviors over the behavior space. The system is characterized by the
volume of behavior space it can access.

CHARC is typically applied to a three-dimensional behavior
space defined by KR, GR, and MC, but it also allows the configuration
of alternative measures; there is no claim by the authors of CHARC
that these measures are the best for mapping a behavior space.73 Given
a sufficiently fast and accurate simulator, CHARC can be used to find
potentially compelling phenomena to then test in hardware experi-
ments. The results of these experiments can then refine the simulator,
creating a closed software improvement loop.

VI. CHALLENGES AND OUTLOOK

Experimental realizations. Thus far, most studies have only
explored nanomagnetic RC in simulation. It is now critical that the
most promising proposals are transferred to experimental demonstra-
tions. The challenges here are not a lack of methods to input signals
into materials or measure well-established materials’ responses but the
complexity of the proposed devices and the measurement infrastruc-
ture required for proof-of-principle experiments. The latter needs to
apply and measure signal trains in substrate-compatible formats at
speeds up to GHz. While these challenges are substantial, robust func-
tionality can be demonstrated only via these experimental prototypes
under real-world conditions and constraints. While we expect a system

computing using material dynamics to be inherently more efficient,
such prototypes will allow an accurate measurement of energy con-
sumption76 and drive future device improvements.

Scalability. Once experiments demonstrate basic functionality, it
is essential to examine the scalability of proposed RC systems. For
example, for simple IOD-1D, time-multiplexed implementations of
RC, it will be essential to examine how computational power is
enriched if these devices create IOD-N networks, either via external
interconnects or via in materia interactions. One needs to explore how
computational power scales as the size and complexity of systems
increase. Computational power will be particularly critical when
exploiting in materia interaction as these will have natural length scales
beyond which individual inputs and outputs of a reservoir will not
directly interact. Meta-reservoirs, i.e., systems consisting of multiple
interconnected reservoirs with different computational properties,
should also be explored. Such architectures may likely have substan-
tially greater power than their constituent parts.77 In all of these cases,
simulations will be an essential tool for exploration. These allow evalu-
ation of the ultimate computational potential of a material system by
ignoring the physical confines of interfacing in the first instance.

Algorithms. The simplicity of the training algorithms RC uses is
another critical element for the popularity of RC in the spintronics
community. However, this simplicity also has drawbacks; training RC
online with the simplest algorithms was challenging until recent meth-
ods60 improved its performance by efficiently increasing algorithmic
complexity. We pay a small price for improving learning speed and
resilience to catastrophic forgetting. Similarly, to achieve Scalability,
we need to optimize the interconnectivity between the reservoirs or
their timescales.77 Typically, however, techniques for finding appropri-
ate parameters require precise mathematical reservoir models, and in
spintronic devices, such models may only sometimes be available.
Techniques that allow for automated tuning of the parameters of
mathematically agnostic reservoirs will be transformative.

Evaluation. Task-agnostic metrics offer a powerful platform for
understanding the computational properties of potential reservoirs. With
the wealth of nanomagnetic systems available for this purpose, careful
evaluation of these metrics will be essential for understanding their rela-
tive strengths and weaknesses. We do not believe such evaluation will
reveal a single system as inherently superior. A wealth of factors must be
considered, including power consumption, operating speed, and produc-
tion cost. More likely, a thorough evaluation of device concepts will
reveal what applications they would best suit, whether in lower power
edge-computing systems or high-throughput data co-processors, and
how nanomagnetic RC systems compare to other competitor technolo-
gies. In all cases, it will be essential to recognize the heterotic nature of
RC, i.e., conventional electronic systems must augment the reservoir to
create input and output layers, all with their constraints and overheads.

Applications. So far, reservoir-based spintronic devices have
solved simple benchmark problems. While this is inevitable at the ear-
lier stages of research, such toy problems serve only as proof of con-
cept. They are inappropriate for the evaluation of the reservoirs and
for attracting a more general interest in the technology. Identifying
more challenging tasks within application areas where the spintronics
devices may be transformative is necessary. At this stage, it is hard to
imagine that spintronic-based RC will serve as general-purpose devi-
ces; we expect that there are particular niche areas for which they may
be suited. For instance, in the context of edge computing, a promising
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direction may be that of smart sensors, where we would like to offload
low-energy preprocessing on the chip. Generally, RC maybe also boost
existing methods where additional memory is helpful by adding only a
small overhead. For instance, in robotics, the advantages of augment-
ing existing architectures with a reservoir are demonstrated in the
problem of visual place recognition.78 For this, interfacing spintronics
technology with other hardware may be crucial for the further devel-
opment of the devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Echo State Network, a
fundamental neural network reservoir model, and some typical bench-
marks used in reservoir computing.
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