180 research outputs found
The flux of secondary anti-deuterons and antihelium produced in the interstellar medium
Several measurements were performed to find antiprotons in the primary cosmic radiation. Because it is difficult to get completely separated secondarily produced antiprotons from primary ones, calculations based on accelerator results were performed for the flux of secondarily produced anti-deuterons and antihelium
Measurements of integral muon intensity at large zenith angles
High-statistics data on near-horizontal muons collected with Russian-Italian
coordinate detector DECOR are analyzed. Precise measurements of muon angular
distributions in zenith angle interval from 60 to 90 degrees have been
performed. In total, more than 20 million muons are selected. Dependences of
the absolute integral muon intensity on zenith angle for several threshold
energies ranging from 1.7 GeV to 7.2 GeV are derived. Results for this region
of zenith angles and threshold energies have been obtained for the first time.
The dependence of integral intensity on zenith angle and threshold energy is
well fitted by a simple analytical formula.Comment: 4 pages, 4 figures, 1 tabl
Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ
Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using
MUSIC. A modified version of the Gaisser sea level muon distribution and a
well-tested Monte Carlo integration method are introduced. Average muon energy,
flux and rate are tabulated. Plots of average energy and angular distributions
are given. Implications on muon tracker design for future experiments are
discussed.Comment: Revtex4 33 pages, 16 figures and 4 table
Cosmic muon flux at shallow depths underground
We consider the cosmic muon background for the installations located at
shallow depths. We suggest a relatively simple formula for the sea-level muon
spectrum, which allows calculate dependencies of the vertical muon intensity
and integral muon flux density on overburden. Muon flux dependency on the
zenith angle at overburden of 10 to 100 meters of standard rock shows that muon
angular distribution practically does not change in this interval. We present
muon angular distributions for three typical apparatus locations in
measurements on the surface and at shallow depths. It is shown that for such
installations the active shielding "umbrella" should overlap a zenith angle of
\theta ~ 80^o to remove the cosmic muon background.Comment: 9 pages, 6 figures, submitted to Phys.Atom.Nuc
Atmospheric Muon Flux at Sea Level, Underground, and Underwater
The vertical sea-level muon spectrum at energies above 1 GeV and the
underground/underwater muon intensities at depths up to 18 km w.e. are
calculated. The results are particularly collated with a great body of the
ground-level, underground, and underwater muon data. In the hadron-cascade
calculations, the growth with energy of inelastic cross sections and pion,
kaon, and nucleon generation in pion-nucleus collisions are taken into account.
For evaluating the prompt muon contribution to the muon flux, we apply two
phenomenological approaches to the charm production problem: the recombination
quark-parton model and the quark-gluon string model. To solve the muon
transport equation at large depths of homogeneous medium, a semi-analytical
method is used. The simple fitting formulas describing our numerical results
are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially
all underground data on the muon intensity correlate with each other and with
predicted depth-intensity relation for conventional muons to within 10%.
However, the high-energy sea-level data as well as the data at large depths are
contradictory and cannot be quantitatively decribed by a single nuclear-cascade
model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data
and references added, typos correcte
Evidence for -atoms with DIRAC
We present evidence for the first observation of electromagnetically bound
-pairs (-atoms) with the DIRAC experiment at the CERN-PS.
The -atoms are produced by the 24 GeV/c proton beam in a thin Pt-target
and the and -mesons from the atom dissociation are analyzed in
a two-arm magnetic spectrometer. The observed enhancement at low relative
momentum corresponds to the production of 173 54 -atoms. The mean
life of -atoms is related to the s-wave -scattering lengths, the
measurement of which is the goal of the experiment. From these first data we
derive a lower limit for the mean life of 0.8 fs at 90% confidence level.Comment: 15 pages, 9 figure
First atom lifetime and scattering length measurements
The results of a search for hydrogen-like atoms consisting of
mesons are presented. Evidence for atom production
by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen
in terms of characteristic pairs from their breakup in the same target
() and from Coulomb final state interaction (). Using
these results the analysis yields a first value for the atom lifetime
of fs and a first model-independent measurement of
the S-wave isospin-odd scattering length
( for isospin ).Comment: 14 pages, 8 figure
Muon `Depth -- Intensity' Relation Measured by LVD Underground Experiment and Cosmic-Ray Muon Spectrum at Sea Level
We present the analysis of the muon events with all muon multiplicities
collected during 21804 hours of operation of the first LVD tower. The measured
angular distribution of muon intensity has been converted to the `depth --
vertical intensity' relation in the depth range from 3 to 12 km w.e.. The
analysis of this relation allowed to derive the power index, , of the
primary all-nucleon spectrum: . The `depth -- vertical
intensity' relation has been converted to standard rock and the comparison with
the data of other experiments has been done. We present also the derived
vertical muon spectrum at sea level.Comment: 7 pages, 3 figures, to be published on Phys. Rev.
Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV
The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3
magnetic muon spectrometer for zenith angles ranging from 0 degree to 58
degree. Due to the large exposure of about 150 m2 sr d, and the excellent
momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in
the vertical direction is achieved.
The ratio of positive to negative muons is studied between 20 GeV and 500
GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003
(stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering
We have measured the spin-dependent structure function in inclusive
deep-inelastic scattering of polarized muons off polarized protons, in the
kinematic range and . A
next-to-leading order QCD analysis is used to evolve the measured
to a fixed . The first moment of at is .
This result is below the prediction of the Ellis-Jaffe sum rule by more than
two standard deviations. The singlet axial charge is found to be . In the Adler-Bardeen factorization scheme, is
required to bring in agreement with the Quark-Parton Model. A
combined analysis of all available proton and deuteron data confirms the
Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical
Review
- …