43 research outputs found

    An Aggregated Mutual Information Based Feature Selection with Machine Learning Methods for Enhancing IoT Botnet Attack Detection

    Get PDF
    Due to the wide availability and usage of connected devices in Internet of Things (IoT) networks, the number of attacks on these networks is continually increasing. A particularly serious and dangerous type of attack in the IoT environment is the botnet attack, where the attackers can control the IoT systems to generate enormous networks of “bot” devices for generating malicious activities. To detect this type of attack, several Intrusion Detection Systems (IDSs) have been proposed for IoT networks based on machine learning and deep learning methods. As the main characteristics of IoT systems include their limited battery power and processor capacity, maximizing the efficiency of intrusion detection systems for IoT networks is still a research challenge. It is important to provide efficient and effective methods that use lower computational time and have high detection rates. This paper proposes an aggregated mutual information-based feature selection approach with machine learning methods to enhance detection of IoT botnet attacks. In this study, the N-BaIoT benchmark dataset was used to detect botnet attack types using real traffic data gathered from nine commercial IoT devices. The dataset includes binary and multi-class classifications. The feature selection method incorporates Mutual Information (MI) technique, Principal Component Analysis (PCA) and ANOVA f-test at finely-granulated detection level to select the relevant features for improving the performance of IoT Botnet classifiers. In the classification step, several ensemble and individual classifiers were used, including Random Forest (RF), XGBoost (XGB), Gaussian Naïve Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic Regression (LR) and Support Vector Machine (SVM). The experimental results showed the efficiency and effectiveness of the proposed approach, which outperformed other techniques using various evaluation metrics

    A convolutional neural network-based decision support system for neonatal quiet sleep detection

    Get PDF
    Sleep plays an important role in neonatal brain and physical development, making its detection and characterization important for assessing early-stage development. In this study, we propose an automatic and computationally efficient algorithm to detect neonatal quiet sleep (QS) using a convolutional neural network (CNN). Our study used 38-hours of electroencephalography (EEG) recordings, collected from 19 neonates at Fudan Children's Hospital in Shanghai, China (Approval No. (2020) 22). To train and test the CNN, we extracted 12 prominent time and frequency domain features from 9 bipolar EEG channels. The CNN architecture comprised two convolutional layers with pooling and rectified linear unit (ReLU) activation. Additionally, a smoothing filter was applied to hold the sleep stage for 3 minutes. Through performance testing, our proposed method achieved impressive results, with 94.07% accuracy, 89.70% sensitivity, 94.40% specificity, 79.82% F1-score and a 0.74 kappa coefficient when compared to human expert annotations. A notable advantage of our approach is its computational efficiency, with the entire training and testing process requiring only 7.97 seconds. The proposed algorithm has been validated using leave one subject out (LOSO) validation, which demonstrates its consistent performance across a diverse range of neonates. Our findings highlight the potential of our algorithm for real-time neonatal sleep stage classification, offering a fast and cost-effective solution. This research opens avenues for further investigations in early-stage development monitoring and the assessment of neonatal health

    A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network

    Get PDF
    A vehicular ad hoc network (VANET) is an emerging technology that improves road safety, traffic efficiency, and passenger comfort. VANETs’ applications rely on co-operativeness among vehicles by periodically sharing their context information, such as position speed and acceleration, among others, at a high rate due to high vehicles mobility. However, rogue nodes, which exploit the co-operativeness feature and share false messages, can disrupt the fundamental operations of any potential application and cause the loss of people’s lives and properties. Unfortunately, most of the current solutions cannot effectively detect rogue nodes due to the continuous context change and the inconsideration of dynamic data uncertainty during the identification. Although there are few context-aware solutions proposed for VANET, most of these solutions are data-centric. A vehicle is considered malicious if it shares false or inaccurate messages. Such a rule is fuzzy and not consistently accurate due to the dynamic uncertainty of the vehicular context, which leads to a poor detection rate. To this end, this study proposed a fuzzy-based context-aware detection model to improve the overall detection performance. A fuzzy inference system is constructed to evaluate the vehicles based on their generated information. The output of the proposed fuzzy inference system is used to build a dynamic context reference based on the proposed fuzzy inference system. Vehicles are classified into either honest or rogue nodes based on the deviation of their evaluation scores calculated using the proposed fuzzy inference system from the context reference. Extensive experiments were carried out to evaluate the proposed model. Results show that the proposed model outperforms the state-of-the-art models. It achieves a 7.88% improvement in the overall performance, while a 16.46% improvement is attained for detection rate compared to the state-of-the-art model. The proposed model can be used to evict the rogue nodes, and thus improve the safety and traffic efficiency of crewed or uncrewed vehicles designed for different environments, land, naval, or air

    Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction

    Get PDF
    Hypertension is a major cause of mortality of millions of people worldwide. Cerebral vascular changes are clinically observed to precede the onset of hypertension. The early detection and quantification of these cerebral changes would help greatly in the early prediction of the disease. Hence, preparing appropriate medical plans to avoid the disease and mitigate any adverse events. This study aims to investigate whether studying the cerebral changes in specific regions of human brains (specifically, the anterior, and the posterior compartments) separately, would increase the accuracy of hypertension prediction compared to studying the vascular changes occurring over the entire brain’s vasculature. This was achieved by proposing a computer-aided diagnosis system (CAD) to predict hypertension based on cerebral vascular changes that occur at the anterior compartment, the posterior compartment, and the whole brain separately, and comparing corresponding prediction accuracy. The proposed CAD system works in the following sequence: (1) an MRA dataset of 72 subjects was preprocessed to enhance MRA image quality, increase homogeneity, and remove noise artifacts. (2) each MRA scan was then segmented using an automatic adaptive local segmentation algorithm. (3) the segmented vascular tree was then processed to extract and quantify hypertension descriptive vascular features (blood vessels’ diameters and tortuosity indices) the change of which has been recorded over the time span of the 2-year study. (4) a classification module used these descriptive features along with corresponding differences in blood pressure readings for each subject, to analyze the accuracy of predicting hypertension by examining vascular changes in the anterior, the posterior, and the whole brain separately. Experimental results presented evidence that studying the vascular changes that take place in specific regions of the brain, specifically the anterior compartment reported promising accuracy percentages of up to 90%. However, studying the vascular changes occurring over the entire brain still achieve the best accuracy (of up to 100%) in hypertension prediction compared to studying specific compartments

    Predicting the Level of Respiratory Support in COVID-19 Patients Using Machine Learning

    Get PDF
    In this paper, a machine learning-based system for the prediction of the required level of respiratory support in COVID-19 patients is proposed. The level of respiratory support is divided into three classes: class 0 which refers to minimal support, class 1 which refers to non-invasive support, and class 2 which refers to invasive support. A two-stage classification system is built. First, the classification between class 0 and others is performed. Then, the classification between class 1 and class 2 is performed. The system is built using a dataset collected retrospectively from 3491 patients admitted to tertiary care hospitals at the University of Louisville Medical Center. The use of the feature selection method based on analysis of variance is demonstrated in the paper. Furthermore, a dimensionality reduction method called principal component analysis is used. XGBoost classifier achieves the best classification accuracy (84%) in the first stage. It also achieved optimal performance in the second stage, with a classification accuracy of 83%

    A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images

    Get PDF
    © 2020 Elsevier Ltd Cardiac MRI has been widely used for noninvasive assessment of cardiac anatomy and function as well as heart diagnosis. The estimation of physiological heart parameters for heart diagnosis essentially require accurate segmentation of the Left ventricle (LV) from cardiac MRI. Therefore, we propose a novel deep learning approach for the automated segmentation and quantification of the LV from cardiac cine MR images. We aim to achieve lower errors for the estimated heart parameters compared to the previous studies by proposing a novel deep learning segmentation method. Our framework starts by an accurate localization of the LV blood pool center-point using a fully convolutional neural network (FCN) architecture called FCN1. Then, a region of interest (ROI) that contains the LV is extracted from all heart sections. The extracted ROIs are used for the segmentation of LV cavity and myocardium via a novel FCN architecture called FCN2. The FCN2 network has several bottleneck layers and uses less memory footprint than conventional architectures such as U-net. Furthermore, a new loss function called radial loss that minimizes the distance between the predicted and true contours of the LV is introduced into our model. Following myocardial segmentation, functional and mass parameters of the LV are estimated. Automated Cardiac Diagnosis Challenge (ACDC-2017) dataset was used to validate our framework, which gave better segmentation, accurate estimation of cardiac parameters, and produced less error compared to other methods applied on the same dataset. Furthermore, we showed that our segmentation approach generalizes well across different datasets by testing its performance on a locally acquired dataset. To sum up, we propose a deep learning approach that can be translated into a clinical tool for heart diagnosis

    Segmentation of Infant Brain Using Nonnegative Matrix Factorization

    Get PDF
    This study develops an atlas-based automated framework for segmenting infants\u27 brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant\u27s brain at the isointense age (6-12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov-Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI

    Computer Aided Autism Diagnosis Using Diffusion Tensor Imaging

    Get PDF
    © 2013 IEEE. Autism Spectrum Disorder (ASD), commonly known as autism, is a lifelong developmental disorder associated with a broad range of symptoms including difficulties in social interaction, communication skills, and restricted and repetitive behaviors. In autism spectrum disorder, numerous studies suggest abnormal development of neural networks that manifest itself as abnormalities of brain shape, functionality, and/ or connectivity. The aim of this work is to present our automated computer aided diagnostic (CAD) system for accurate identification of autism spectrum disorder based on the connectivity of the white matter (WM) tracts. To achieve this goal, two levels of analysis are provided for local and global scores using diffusion tensor imaging (DTI) data. A local analysis using the Johns Hopkins WM atlas is exploited for DTI atlas-based segmentation. Furthermore, WM integrity is examined by extracting the most notable features representing WM connectivity from DTI. Interactions of WM features between different areas in the brain, demonstrating correlations between WM areas were used, and feature selection among those associations were made. Finally, a leave-one-subject-out classifier is employed to yield a final per-subject decision. The proposed system was tested on a large dataset of 263 subjects from the National Database of Autism Research (NDAR) with their Autism Diagnostic Observation Schedule (ADOS) scores and diagnosis (139 typically developed: 66 males, and 73 females, and 124 autistics: 66 males, and 58 females), with ages ranging from 96 to 215 months, achieving an overall accuracy of 73%. In addition to this achieved global accuracy, diagnostically-important brain areas were identified, allowing for a better understanding of ASD-related brain abnormalities, which is considered as an essential step towards developing early personalized treatment plans for children with autism spectrum disorder

    Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images

    Get PDF
    The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore