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ABSTRACT Autism Spectrum Disorder (ASD), commonly known as autism, is a lifelong developmental
disorder associated with a broad range of symptoms including difficulties in social interaction, commu-
nication skills, and restricted and repetitive behaviors. In autism, numerous studies suggest abnormal
development of neural networks that manifest itself as abnormalities of brain shape, functionality, and/
or connectivity. The aim of this work is to present our automated computer aided diagnostic (CAD)
system for accurate identification of autism based on the connectivity of the white matter (WM) tracts.
To achieve this goal, two levels of analysis are provided for local and global scores using diffusion tensor
imaging (DTI) data. A local analysis using Johns Hopkins WM areas’ atlas is exploited for DTI atlas-based
segmentation. Furthermore, WM integrity is examined by extracting the most notable features representing
WM connectivity from DTI. Interactions of WM features between different areas in the brain, demonstrating
correlations between WM areas were used, and feature selection among those associations were made.
Finally, a LOSO classifier is employed to yield a final per-subject decision. The proposed system was tested
on a large dataset of 263 subjects from NDAR database with their Autism Diagnostic Observation Schedule
(ADOS) scores and diagnosis (141 typically developed: 66 males, and 75 females, and 122 autistics: 66
males, and 56 females), with ages ranging from 96 to 215 months, achieving an overall accuracy of 73%. In
addition to this achieved global accuracy, diagnostically-important brain areas were identified, allowing for
a better understanding of ASD-related brain abnormalities, which is considered as an essential step towards
developing early personalized treatment plans for children with autism.

INDEX TERMS Autism Spectrum disorder, connectivity, diffusion, DTI, dwMRI, gray matter and White
matter.

I. INTRODUCTION

Autism spectrum disorder is a neuro-developmental syn-
drome that affects both communications skills, and behav-
ioral and social interaction [1, 2, 3]. Causes behind ASD are
not fully understood, and numerous hypotheses and theories
have been proposed for its aetiology . Research suggests
that this is a complex or multifactor condition, wherein both
genes and environmental influences offer additive effects for
symptoms expression. Some investigators hypothesize that
ASD symptoms are linked to structural [4] or connectivity [5]
anomalies, whereas others suggest a malleable abnormality
that ties varying brain functionality to the performance of
different tasks [6]. In order to study different types of ab-
normalities correlated with ASD, several magnetic resonance

imaging (MRI) based modalities have been used, such as: (i)
structural MRI (sMRI) for studying anatomical features, (ii)
functional MRI (fMRI) for studying brain activities, and (iii)
diffusion tensor imaging (DTI) for studying brain connectiv-
ity. This paper focuses on the latter perspective; using DTI as
a way of diagnosing ASD.

DTI has drawn a lot of attention over the last two decades
as it allows the analysis of the structural connectivity of the
brain white matter (WM) [7]. Although a lot of information
could be revealed from the axonal organization, conventional
MRI techniques were not capable of capturing this informa-
tion due to limited resolution and contrast. Fortunately, this
has been achievable using DTI, which is characterized by its
diffusion anisotropy contrast that reveals information about
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axonal orientation. DTI is based on the diffusion of water
molecules, which is easier in the direction of the axonal
bundles compared to the perpendicular direction, making it
feasible to determine axonal direction. In DTI, the diffusion
of water molecules is measured along six predetermined
directions, from which the diffusion along any arbitrary di-
rection can be calculated. This is mathematically represented
by a 3 × 3 matrix, called the diffusion tensor [8], usually
interpreted graphically as an ellipsoid. Several features can
be extracted from the diffusion tensor, most importantly, frac-
tional anisotropy (FA), axial and radial diffusivity, and mean
diffusivity (MD) [9]. Those measured parameters provide
information about WM micro-structure and connectivity [10].
Other features derived from those measurements, such as
trace, skewness, rotational invariance, and others, character-
ize different aspects of diffusivity in WM tracts [11].

Several studies [6, 12, 13, 14, 15, 16, 17, 18, 19, 20] have
been carried out using DTI to investigate the presence of
abnormalities in the WM in individuals with ASD. [6] used
DTI to compare the structure of the white matter of individuals
with ASD to that of typically developed (TD) subjects. In
their work, they took into consideration IQ, age and gender.
They found that the FA had lower values in the case of ASD
in some white matter regions of the brain that are known
to be associated with social cognition e.g., temporoparietal
junction, superior temporal sulcus, ventromedial prefrontal
cortex, fusiform gyrus, and anterior cingulate; however, their
study did not report any alterations that might occur to the
MD values. In addition to FA values, MD values were also
obtained by [12] for the corpus callosum. Their work showed
a reduction in the FA values and an increase in the MD values
of the total corpus callosum for individuals with ASD as
compared to TD subjects. Higher MD and radial diffusivity
with reduced FA in autistic subjects was reported by [13].
Another study [14] examining the frontal lobe white matter
reported FA values and a higher diffusion coefficient in ASD.

The integrity of WM was examined using DTI by [15] for
ASD and TD subjects with and without age and IQ correction.
The individuals with ASD were found to have a higher MD
over the WM of the cerebellum and cerebrum, regardless
whether the correction was performed or not. They also noted
decreased FA values for the left and right superior and inferior
longitudinal fasciculus, and in the left corona radiata in cases
of ASD when age and IQ were taken into consideration;
however, this decrease almost disappeared after performing
age and IQ correction. Their analysis inferred that the kurtosis
of the distribution of FA values of WM is higher in cases of
ASD. [16] presented a comprehensive review on 48 studies
that were carried out from 2004 to 2012 for the purpose of
studying the WM integrity of ASD using DTI. The review
showed an agreement between these different studies in that
individuals with ASD have lower WM integrity over many
regions of interest as compared to TD individuals, reflected
as lower values of FA and higher values for MD. The results
were highly consistent in regards to some regions of interest,
e.g., cingulum, corpus callosum. [19] reviewed some of the

current structural and functional connectivity ASD data to
examine the ’disrupted connectivity’ theory. They identified
many confounds in the literature that could have affected
the conclusions and highlighted the conflicting results. In
[20], correlations between autism-spectrum quotient (AQ)
and DTI parameters (FA, MD, AD, RD) were examined
in white matter tracts that were altered in previous studies
for obsessive-compulsive disorder (OCD) patients with ASD
traits. Their results suggested that variations in WM features
may be explained partially by autistic traits in OCD patients.

In one study of 75 subjects, [21] showed a diagnostic
predictive capability, with 80% accuracy, based on FA and
MD. Another study that aimed to provide classification of
autism, performed on 73 subjects used the shape of white
matter tracts to achieve an accuracy up to 75% [22]. In [18],
WM connectivity was analyzed and its integrity was used in
the diagnosis of autism in 38 balanced-groups of infants.

As concluded from similar investigations, neither the
under-connectivity nor the over-connectivity of the brain
hypothesis can successfully describe the deviations of the
ASD population alone [23]. Despite the numerous efforts to
detect autism-related variations using imaging, there is no
robust, effective CAD system that is able to both diagnose
autistics and place them within a severity spectrum. This is
what originated the idea of using DTI in order to develop an
extensive automated diagnosis system that can resolve autism
endophenotypes and help the clinician deliver personalized
treatment plans to individuals with autism.

II. METHODOLOGY
The primary objective of this work is to extract informative
local white matter features for each brain area that can be
used to discriminate an autism diagnosis. Fusing the results
of those local associations would help obtain an accurate
global diagnostic decision per subject. The framework mainly
consists of three stages: first, a preprocessing step is carried
out to reduce imaging artifacts and eliminate non-brain
tissues. The second stage is feature calculation, extraction, and
selection, including the use of an atlas-based segmentation
technique to allocate features for each area. The third stage is a
classification step that is used for obtaining the final diagnosis,
as well identifying specific brain areas that offer best help to
differentiate ASD from neurotypical. Details of the proposed
framework as well as experimental results are discussed in the
next sections.

A. WHITE MATTER CONNECTIVITY ANALYSIS:

For each subject, white matter was studied using diffusion
tensor imaging (DTI) information. In DTI, a 3x3 diffusion
tensor describes the behavior of each voxel. To find the
principal diffusion directions, the 3 eigenvalues λ1, λ2, and
λ3 and their corresponding eigenvectors v1, v2 and v3 are
calculated, where the eigenvector corresponding to the largest
eigenvalue is the principle diffusion direction (i.e, diffusion
across the fiber) while the other two eigenvectors correspond
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FIGURE 1: Graphical representation of diffusion tensor using
the ellipsoid model using three eigenvectors that define the
orientation of the ellipsoid in 3D, and three eigenvalues that
define the principal axes values of the ellipsoid.

to the radial diffusion directions (i.e,diffusion perpendicular
to the fiber) as illustrated in FIGURE 1 [24].

A special case is an isotropic medium, where the diffusion
ellipsoid takes the shape of a sphere where λ1 = λ2 = λ3. In
the case of an anisotropic medium, the diffusion is represented
as an ellipsoid as shown pointing in the v1 direction of λ1.
There are six output features obtained from DTI that are the
most commonly used anisotropy measurements describing
white matter connectivity:

1) Fractional Anisotropy (FA): The most widely used
measurement of anisotropy, a scalar value between 0
and 1 that determines the diffusion integrity. As FA
approaches 0, the diffusion is considered to be isotropic
while higher values mean that the diffusion tends to
be in a uniform direction (i.e,the principal eigenvector
direction) [24, 25].

2) Mean diffusivity (MD): Average diffusion measurement
that gives an overall assessment of the diffusion in a
voxel, MD = 1

3 (λ1 + λ2 + λ3).
3) Axial diffusivity (AD): Measures the diffusion along

the principal axis. AD = λ1 .
4) , 5) Radial diffusivity in the two perpendicular vectors

to the principle diffusion vector: λ2andλ3 .
6) Skewness: a 3rd order measurement, characterizing

the shape of the diffusion tensor, which is not cap-
tured by FA or other lower order measurements [11].
Skewness = (λ1−MD)3+(λ2−MD)3+(λ3−MD)3

3 .

In the present study, FSL toolbox https://fsl.fmrib.ox.ac.uk
was used for DTI computation. The eddy current correction
[26] and brain extraction using BET algorithm [27, 28] were
applied prior to calculating the diffusion tensor. FIGURE 2
shows an example of the tensor visualization.

The calculated features are then aggregated over the 48
local regions defined by Johns Hopkins WM atlas parcellation
[29] using DTI-TK software. The atlas-based segmentation
task is elaborated in the next subsection. Finally, the rest of
the proposed algorithm is implemented in Matlab.

1) Brain parcellation into local brain areas:
After calculating the above metrics at each vertex, it is impor-
tant to allocate those metric values into local brain regions. An
atlas-based segmentation approach is adopted, where we treat
the area’s segmentation problem as a registration task. In this
step, Johns Hopkins WM atlas [29] along with its labeled areas
are used. John Hopkins is an ICBM coordinate-based WM
atlas which defines 48 brain areas that were hand segmented
from 81 different subjects. A registration from the MNI atlas
space to each subject’s space using DTI-TK software [30]
is performed, as it supports interoperability with FSL. After
atlas-subject registration, an affine transformation is applied to
JHU atlas labels, providing WM areas masks for each subject.
Thus, we can get local features for each WM area that are used
at the local classification level.FIGURE 3 shows the entire
diagnosis pipeline. The main advantage of this technique is
that it is scalable, automated, and has high accuracy.

2) Feature selection:
The above mentioned procedures provide 6 features (FA, MD,
λ1, λ2, λ3, and Skewness) for each voxel, per each subjects.
All of those are raw values per voxel, some vectors are tens of
thousand in length per area. To provide a compact represen-
tation, we calculate a short summary statistics vectors (mean
[µ], standard deviation [σ], and skewness [E(x − µ)3/σ3])
for each area. Then, we concatenate those summary statistics
resulting in a feature vector of length 18 per each area (6
feature types × 3 summary statistic vector length). Instead of
using those direct features, we derive new ones capturing the
implicit relationships between different brain areas’ values,
calculated as the correlation between the feature vectors of
each two areas. We reduce this huge feature space(48 × 48
per subject), relative to the sample size (263 subjects), by
extracting only the important discriminatory features, to build
our diagnosis algorithm. For this purpose, we used a simple
filtering method known as the signal to noise ratio (s2n) filter
[31]. In this method, we rank each feature based on a score
representing the ratio between the absolute difference of the
means of the two classes and their variance, given by

s2n(Xi, Y ) =
abs(µ(y+)− µ(y−))
var(y+) + var(y−)

(1)

where Xi is the feature vector, and Y is class label, µ(y+)
is the mean value for class y+ vectors, and var(y+) is the
variance for this class. FIGURE 4 illustrates the adopted
feature selection technique. Then, we use only the highest-
ranking features in next steps.

B. ASD DIAGNOSIS
Using the local features extracted from DTI, each of the
extracted feature for each of the white matter areas were used
separately to distinguish between ASDs and TD subjects on
the global level. The contribution of each added feature on
the diagnostic accuracy is shown, highlighting those that were
most related to autism. A number of classifiers from diverse
classifier algorithms were tested, including Support Vector
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FIGURE 2: Example of extracted features from one subject DTI brain, (a) Axial diffusivity λ1 , (b) Radial diffusion λ2, (c)
Radial diffusion λ3, (d) Mean Diffusivity MD, (e) Fractional Anisotropy FA, (f) Labeled WM areas of John Hopkins Atlas,
each color identifies here different WM area.

Machine, k-Nearest Neighbor (KNN), decision trees, neural
networks (NN), and deep NN with auto-encoders and exper-
iments show better performance in terms of cross-validated
accuracy and time for Support Vector Machine (SVM). Linear
SVM-classifiers were used on each classification level, that
takes correlation features as inputs and outputs a probability
that a subject is autistic from the given areas for which
information is provided. Normally, not all areas will give
significant discrimination between autistic and TD subjects,
so first n features, are used in classification, where n is
determined empirically. FIGURE 3 shows the pipeline of
the entire diagnostic framework.

III. EXPERIMENTAL RESULTS
Data for this experiment were obtained from the National
Database for Autism Research (NDAR) [32]. Anonymized

MRI scans were obtained for 263 subjects (131 females and
132 males, 122 autistic and 141 typically developed). The
subjects’ ages were between 96 to 215 months, and they had
IQs ranging between 84 and 118.

To ensure system robustness, we used leave-one-subject-
out (LOSO) cross-validation at all runs. For each WM area,
overall accuracy, sensitivity, and specificity were calculated.

To obtain the subject’s global diagnosis decision, two steps
are used. First, features are ranked based on the s2n score, then
iteratively first n is fed to next step, with n starting from 1 to
250. Selected features are concatenated, and SVM classifiers
are used to obtain probabilities of being autistic given this new
feature vector, providing a single global decision per subject,
which achieved a diagnostic accuracy of 73%, sensitivity of
70%, and specificity of 76%. This performance was achieved
using n = 79 correlations. The most significant of these region
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FIGURE 3: DTI experiment pipeline, where the brain is
extracted, preprocessed, features calculated, atlas based seg-
mentation performed, and selected features are incorporated
for final classifiers.

Algorithm 1 DTI-based ASD diagnosis system

1: ∀ dwMRI subject’s data :
2: 1. run preprocessing modules:
3: i) Eddy Current Correction
4: ii) Apply brain mask generated by Brain Extrac-

tion Tool
5: 2. Feature Calculations:
6: i) Use FSL to calculate DTI Tensor, scale units,

calculate λ1,λ2,λ3,FA,MD, sk volumes
7: ii) Register DTI MNI space IIT Human Brain

Atlas to each subject using DTI-TK
8: iii) Apply resulted transformation on the JHU

atlas labels
9: iv) Use registered labels to extract feature per

each WM area
10: v) Calculate summary statistics (µ, σ, Skwns)

for each area for each feature, rank feature values across
the different 48 brain areas, get feature vector.

11: vi) Calculate correlations between feature vectors
of each two areas

12: vii) Use s2n filter to rank correlation-features
13: 3. Classification:
14: i) iterate on n from 1 to 250.
15: ii) Feed first n ranked ordered feature for all

subjects to an SVM classifier
16: iii) Give a final diagnosis for each subject,

whether TD or ASD
17: End.

TABLE 1: Top ten pairs of white matter areas whose feature-
vector correlations provides separability with highest rank
according to s2n filter. Regions represented in both hemi-
spheres are annotated with L (left) or R (right) if only one
hemisphere is involved, or with B (bilateral) otherwise.

Rank Area 1 Area 2
1 Superior longitudinal fasciculus R Anterior corona radiata R
2 Body of corpus callosum Genu of corpus callosum
3 Superior longitudinal fasciculus R Sagittal stratum
4 Tapetum L Middle cerebellar peduncle
5 Splenium of corpus callosum Middle cerebellar peduncle
6 External capsule L Middle cerebellar peduncle
7 Cingulum L Corticospinal tract R
8 Stria terminalis R Superior corona radiata L

9–10 Superior longitudinal fasciculus L Posterior corona radiata B

pairs are listed in TABLE1.

IV. DISCUSSION
The most important regional correlations for distinguishing
ASD from control 1 are a diverse group, but they fall into five
categories. First is the middle cerebellar peduncle (mcp) as
it correlates with the splenium of the corpus callosum, the
left external capsule (ec), and the left tapetum. The uncinate
fasciculus is a fiber pathway through the ec, which links the
ventral frontal cortex, in particular Brodmann areas 11 and
47, with the temporal pole [33]. Commissural fibers of the
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FIGURE 4: DTI feature extraction procedure

left temporal pole, and of the temporal lobe in general, pass
through the left tapetum on their way to or from the splenium.
The mcp on the other hand carries signals from the cerebral
cortex and subcortical regions, via the pontine nuclei, into the
cerebellar cortex.

Next are correlations between the superior longitudinal
fasciculus (SLF) on the right hemisphere with ipsilateral
sagittal striatum (SS) and anterior corona radiata (CR), and
between SLF in the left hemisphere with bilateral posterior
CR. The SLF is a bidirectional pathway along the anterior-
posterior direction through which different lobes communicate
with each other [34]. Thalamocortical fibers pass through the
SS and CR, where they intermingle with callosal axons [35].
In this category as well as the first, we see in ASD a difference
in the microstructure of cortico-cortical pathways relative to
pathways linking the cerebral cortex with outside regions.

Output from the left motor cortex passes through the
corticospinal tract on the opposite side. Communication
between left motor and premotor areas meanwhile makes use
of pathways through the left cingulum. The middle segment
of the cingulum would be involved in particular; however,
the atlas used in this study does not parcellate the cingulum
further, so we were only able to identify altered correlation
between left cingulum as a whole and right corticospinal tract.
Still, this once again suggests changes in a cortical area’s
connectivity with elsewhere in the cortex vis-à-vis regions
outside the cortex.

The superior CR contains sensorimotor fibers of the poste-
rior frontal/anterior parietal cortex. The microstructure of this
region by itself has been found to differ between ASD and typ-
ically developing children [36]. The stria terminalis contains
efferent fibers from the amygdala, which terminate in several
nuclei of the hypothalamus and regulate the stress response.
We might hypothesize that the increased stress response seen

in ASD [37] is normal hypothalamic activation triggered by
abnormal sensory processing. While the differences in the
superior CR found by Pryweller and colleagues [36] were
more pronounced in the left hemisphere, statistical testing
did not find this significant. Nor was there any significant
distinction between superior CR and other sensory processing
pathways they investigated; all showed increased apparent
diffusivity in ASD. It is not clear why in our study left superior
CR, relative to stria terminalis, particularly stood out.

Differences in the microstructure of genu and body of the
corpus callosum relative to each other are harder to interpret,
given that they are complementary parts of the same structure,
containing commissural fibers from distinct regions of the
cortex. It may be of significance that the sections of the corpus
callosum develop at different gestational ages. The axons
forming the genu grow first, starting in the twelfth or thirteenth
week of gestation, followed by the body and splenium in
anterior-posterior order, and finally the rostrum [38]. Could
this be a clue to pinpointing the developmental stage at which
the propensity for developing ASD originates?

There remain many challenges and potential enhancements
to be investigated in future work. Whilst the system is well
tested and its robustness is assured on only parts of our
dataset, different datasets are needed to assure the generaliz-
ability of the results. Also, more medical interpretation and
statistical analysis are needed to map the impacted regions
to the corresponding expected behaviors. The differences in
regional correlations we have found so far will be useful for
constructing testable hypotheses in that regard. Though many
registration tools were tested on the dataset bulk, a tailored
manual enhancement for area parcellation of each subject can
lead to better feature details and hence improved performance.

Although the system is well tested and its robustness
is assured on current dataset, more datasets is needed to
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check the extendibility and generalization of the results.
Verifying the proposed framework on different dataset would
validate the result and enhance findings. The next steps
for our implemented CAD is to include different image
modalities, such as structural or functional MRI. In this way,
the CAD system will be able to study shape, connectivity
and even functionality, getting most informative abnormality
measures, which might enhance its accuracy, provide better
understanding and personalization, towards an integrated full
system for autism prediction and diagnosis.

A. CONCLUSION
In summary, the proposed diagnosis framework achieved
various goals. First, beside accomplishing a high diagnostic
decision, it allows for a better understanding of the areas in
the white matter impacted by ASD instead of just deciding
whether a subject is autistic. This should in turn lead to a
better understanding of an autistic individuals’ behavior and
predictability of disorder development for those at risk. The
reported accuracy is in the high-range of those reported in the
literature using DTI, with a larger sample size of 263 subjects.
In addition, our system offered scalability, where additional
data sources or imaging modalities could be integrated to the
model, and its contribution to the decision could be considered
separately or jointly.
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