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Predicting the Level of Respiratory Support in COVID-19
Patients Using Machine Learning
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Abstract: In this paper, a machine learning-based system for the prediction of the required level of
respiratory support in COVID-19 patients is proposed. The level of respiratory support is divided into
three classes: class 0 which refers to minimal support, class 1 which refers to non-invasive support,
and class 2 which refers to invasive support. A two-stage classification system is built. First, the
classification between class 0 and others is performed. Then, the classification between class 1 and
class 2 is performed. The system is built using a dataset collected retrospectively from 3491 patients
admitted to tertiary care hospitals at the University of Louisville Medical Center. The use of the
feature selection method based on analysis of variance is demonstrated in the paper. Furthermore, a
dimensionality reduction method called principal component analysis is used. XGBoost classifier
achieves the best classification accuracy (84%) in the first stage. It also achieved optimal performance
in the second stage, with a classification accuracy of 83%.

Keywords: COVID-19; respiratory support; machine learning; feature selection

1. Introduction

In December 2019, a group of atypical pneumonia presented in Wuhan, China [1].
Subsequently, the National Health Commission (NHC) of the People’s Republic of China
declared that a novel coronavirus is responsible for the outbreak [2]. The novel virus was
named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO).
High throughput sequencing resulted in considering COVID-19 as a betacoronavirus.
COVID-19 is genetically similar to the coronaviruses found in bats, furthermore, it shares
about 50% and 79% of its genetic sequence with the coronaviruses responsible for the
Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS),
respectively [3]. Despite the epidemiological evidence which suggests that the majority of
the initial patients visited the Huanan Seafood Market in Wuhan, the zoonotic origin of
COVID-19 still was not identified. Now, most new infections come from human-to-human
transmissions, including those among health care workers and family members [4–6]. As of
2 February 2022, there are about 380 M confirmed cases and there are about 5.7 M confirmed
deaths [7] worldwide.

The most frequent serious clinical manifestation of the disease is viral pneumonia. The
features of the pneumonia are fever, cough, dyspnea, hypoxemia, and bilateral infiltrates
on chest radiography [1,5,6,8]. It is more common that the patient has dry cough than a
productive cough [5]. After a median time of five to eight days, dyspnea appears [1,5].
Severe hypoxemic respiratory failure appears in a significant proportion of the patients
with COVID-19 pneumonia [9,10]. A high risk of death is associated with patients who
require mechanical ventilation [11]. We can conclude that COVID-19 is associated with
respiratory disorders and respiratory support is required for patients with severe disease.
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Significant long-term symptoms from COVID-19 (post-acute sequelae COVID-19
syndrome) affect approximately 30–50% of patients hospitalized with acute COVID-19
infection. Predicting which patients will need respiratory support is an active area of
research with important implications for ensuring appropriate patient care, follow-up,
and healthcare resource allocation [12]. The required patient respiratory support can be
classified into three levels minimal, non-invasive (high-flow nasal cannula or CPAP), and
invasive mechanical ventilation.

Machine learning methods are increasingly utilized to enhance the prediction of respi-
ratory failure. Badnjevic et al. [13] implemented a method for the classification of asthma
and chronic obstructive pulmonary disease. Their method was based on fuzzy rules and the
trained neural network. In the classification between the two classes, a sensitivity of 99.28%
and a specificity of 100% were achieved. In another work by Badnjevic et al. [14], the same
two types of respiratory diseases were classified using an expert diagnostic system that
was validated on a higher number of patients. The system reached a sensitivity of 96.45%
and a specificity of 98.71%. Nopour et al. [15] used machine learning algorithms to predict
the need of intubation in a small number of COVID-19 patients (482). The best performing
machine learning model yielded an area under the curve of 0.892. Kabbaha et al. [16]
investigated the association between several factors and the need for invasive mechanical
ventilation using a large population from the middle east. They used machine learning
approaches and achieved an area under the curve of 0.718. Nirmaladevi et al. [17] used an
unsupervised deep convolutional neural network to classify COVID-19 patients into four
classes according to the seriousness of the disease using chest X-ray images. An accuracy
of 96% was achieved. Zeidberg et al. [18] proposed two machine learning methods: logistic
regression and XGBoost. They applied the methods to patients that suffer from acute respi-
ratory distress syndrome. The best area under the ROC curve (0.81) was obtained from L2
logistic regression. Many methods have been proposed specifically for COVID-19 patients.
Ferrari et al. [19] proposed a method that combines machine learning algorithms such
as ensemble decision trees with the experience of doctors to predict forty-eight hours in
advance which patient will develop moderately-severe respiratory failure. They achieved a
predictive accuracy of 84%. Burdick et al. [20] utilized XGBoost for fitting decision trees to
predict patients who will need invasive mechanical ventilation and they reached an area
under the curve of 0.87. Bolourani et al. [21] proposed a model that is based on XGBoost
and reached an area under the curve of 0.77. Recently, Bendavid et al. [22] proposed an
approach to predict the need for invasive mechanical ventilation in COVID-19 patients
reaching an area under the curve of 0.97. Our work is the first study that proposes an auto-
mated method to predict the level of respiratory support in terms of three classes. Therefore,
our method introduces a more accurate grading of the level of respiratory support.

In this paper, a machine learning based framework that predicts the clinical severity
of the disease was proposed. The severity of the disease is defined in terms of the amount
of respiratory support the patient will require (e.g., ventilation support) using clinical
numerical data collected from patients admitted to tertiary care hospitals. The proposed
system is intended to help streamline physicians’ decision making with regard to immediate
care of COVID-19 patients. Unlike the literature work, e.g., [20,22], that attempted to detect
whether the COVID-19 patient would require invasive mechanical ventilation only, here a
classification problem with three classes (0 minimal support, 1 non-invasive, and 2 invasive)
was investigated. To the best of our knowledge, this work is the first study to investigate
this problem using machine learning approaches.

2. Materials and Methods

A method for predicting the required level of respiratory support in COVID-19 pa-
tients using machine learning algorithms was proposed. The proposed framework of our
work is shown in Figure 1. The following sections explain each part of the framework.
Initially, one stage classification using similar algorithms as presented in the manuscript
was investigated. However, a low classification accuracy of 73% was obtained. Therefore,
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a two stages system was used for classification which improved the accuracy. The three
investigated classes are not classified in one step, instead, the system has two stages. Class
1 with class 2 were combined as one class. Therefore, in the first stage, our system is able to
differentiate between class 0 and the others. Then, in the second stage, our system is able to
classify between class 1 and class 2. The ultimate goal of the study is to help clinicians in
decision making regarding ventilation requirements of COVID-19 patients. All of our work
has been done using Python programming language and its libraries Numpy, Pandas, and
Scikit-Learn [23].

Figure 1. Schematic illustration of our proposed framework.

2.1. Data Description

Retrospective data were collected by the Center of Excellence in Respiratory Infectious
Diseases at the University of Louisville (UofL) starting in February 2020, and the data
analyzed here extend from the creation of the dataset through 31 December 2020. Eight
different hospitals in the Louisville metropolitan area were included, constituting one
academic medical center, two other tertiary care hospitals, and five community hospitals
in the area. Inclusion criteria were a positive COVID-19 polymerase chain reaction test,
symptomatic infection, and admission to the hospital. Symptoms were defined as any
respiratory symptoms, diarrhea, or those of systemic sepsis. The only exclusion criterion
was age less than 18. Complied with the Helsinki Declaration, the acquisition and data
collection were approved by the UofL Institutional Review Board (IRB); the IRB number is
21.0673. The data set contains 3491 patients with 16 raw features, namely, height, weight,
systolic blood pressure, diastolic blood pressure, heart rate, body temperature, respiratory
rate, oxygen saturation, fraction of inspired oxygen, pulmonary arterial pressure, platelet
count, lymphocyte count, neutrophil count, C-reactive protein, lactate dehydrogenase, and
D-dimer. The features were taken from a single timepoint, which is the initial presentation
of patients to the hospital. This is either the measurement taken in the emergency room or
the first measurement taken upon admission to the inpatient ward.

2.2. Data Preparation

In our work, the data were prepared using the following modules:

2.2.1. Data Wrangling

Data wrangling, also known as data cleaning, stands for a set of processes designed to
convert raw data into more easily utilized formats. The exact processes differ according to
the project and the data which can be leveraged. In our work, three processes of data wran-
gling was used. First, the features were renamed into more ready-to-use formats. Renaming
is important to facilitate data analysis using the pandas tool. Second, outliers were removed
from each feature. An outlier is a data point that differs significantly from other observa-
tions. It may be due to variability in the measurement or it may refer to experimental error;
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the latter are sometimes excluded from the data set. Outliers can harm the performance
of the machine learning model and produce statistically insignificant results. Therefore,
removing them is of great importance. Finally, data imputations were performed for all
features that contained nan values. In our work, imputation by the mean value was used.

In the outlier removal step, the entire record is eliminated from the feature matrix. The
initial number of patients/records was 3491 and after outlier removal, 2962 observations
remained. Thus, a high number of outliers (529) was found in the dataset. Examples of
outliers were RR = 0 breathes/minute and HR = 1302 beats/minute. These values are clearly
spurious and only present due to value insertion errors. The machine learning system was
built using the remained 2962 observations. On the other hand, the dataset contained nan
values. Therefore, imputation by means was used to fill these gaps. To check the validity of
the feature values, summary statistics were generated for each feature and the summary
values were reasonable and logical.

After data preparation step, our feature matrix had a size of (2962 observations,
12 features). Then, a two-stage classification system was built. In the first stage, the system
differentiates between class 0 and other classes (class 1 and class 2). In the second stage, the
system differentiates between class 1 and class 2. Thus, a binary classification was used in
each stage.

2.2.2. Feature Engineering

Feature engineering refers to the methodology of applying domain knowledge to
extract new and useful variables from raw data during the creation of a predictive model
using the algorithms of machine learning. The ultimate goal of feature engineering is to
enhance the performance of machine learning algorithms. In our work, four new features
were extracted from the raw features, where the final number of features equals twelve
features. The body mass index (BMI) feature was created by using Equation (1). The mean
arterial pressure (MAP) feature was created using Equation (2). Ratio of pulmonary arterial
oxygen to fraction of inspired oxygen was used as a feature and we named it PaO2/FIO2. It
is worth mentioning that PaO2 is not directly recorded, however, it has been estimated from
the percent oxygen saturation in the blood using various tables and graphs [24]. Finally,
a feature that is described as the ratio between neutrophil count and lymphocyte count
was created. The engineered features were created after recommendations from the clinical
collaborator.

BMI =
Body Mass (kg)

Height2 (1)

MAP = (
2
3
) ∗ Diastolic Pressure + (

1
3
) ∗ Systolic Pressure (2)

The features were renamed with small names that do not contain spaces. In addition,
four features were engineered from the raw features. Thus, the total number of features is
12 with the following names: BMI, MAP, HR, T, RR, PaO2/FiO2, platelets, lymphocytes,
neutrophils, CRP, LDH, and D-dimer which stand for body mass index, mean arterial
pressure, heart rate, body temperature, respiratory rate, ratio of pulmonary arterial oxygen
to fraction of inspired oxygen, platelet count, lymphocytes count, ratio of neutrophils
to lymphocytes, C reactive protein, lactate dehydrogenase, and D-dimer. The mean and
standard deviation of each feature across the three classes are presented in Table 1. The
classes have different features means.
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Table 1. The mean and standard deviation of the 12 features across the three classes.

Class 0 Class 1 Class 2

BMI (kg/m2) 29.97± 7.27 30.38± 7.17 32.06± 6.98

MAP (mmHg) 86.24± 16.33 86.84± 16.89 82.57± 19.04

HR (beats/min) 94± 21.04 95.89± 20.16 101.46± 25.96

T (C) 37.34± 0.82 37.57± 0.95 37.59± 1.11

RR (breath/min) 21.42± 5.59 24.02± 6.58 27.13± 8.14

PaO2/FiO2 (mmHg) 339.89± 106.80 269.53± 102.20 238.49± 110.11

Platelets (×1000/uL) 223.73± 87.09 218.21± 86.43 216.11± 95.50

Lymphocytes (×1000/uL) 1.31± 0.73 1.04± 0.58 1.08± 0.90

Neutrophil/Lymphocyte 5.90± 3.33 6.16± 3.41 7.37± 3.81

CRP (mg/L) 52.65± 56.00 65.17± 67.04 99.18± 713.6

LDH (units/L) 585.26± 233.93 645.54± 310.75 697.65± 362.10

D-dimer (ng/mL) 2374.75± 8382.66 2088.48± 5252.43 3680.06± 13141.4

2.2.3. Feature Selection and Dimensionality Reduction

Feature selection is the process of decreasing the number of features by selecting the
most relevant and non-redundant ones when developing a predictive model. Reducing
the number of input features can decrease the computational cost as well as improve the
performance of the model, in some cases. The types of feature selection methods can be
summarized to unsupervised and supervised. In this work, the performances of two feature
selection methods were evaluated, separately. A supervised method called filter-based
method with statistical measure (analysis of variance (ANOVA)) as well as the recursive
feature elimination method were used. Besides feature selection methods, a dimensionality
reduction method, called principal component analysis (PCA) [25] was investigated. ANOVA
and PCA provided us with the best classification accuracies. This is because the recursive
feature elimination might exacerbate overfitting. Therefore, in this paper, the results from
ANOVA and PCA were presented.

In filter-based selection method, the relationship between each input feature and the
target is evaluated using statistical techniques. Then, our basis is the estimated scores to filter
those input features which will be considered in the modeling. Correlation type statistical
measures are commonly used as the basis when evaluating the relationship between the input
and output variables. Because the paper solves a classification problem with numerical
input and categorical output, ANOVA correlation coefficient [26] was used in our filter-
based feature selection method. The assumptions of ANOVA are satisfied in our work.
Please refer to Algorithm 1 for an overall idea about the basic steps of selecting the best
features for optimal model performance. Our selection criterion is based on the accuracy of
the validation set.

Additionally, PCA was used to reduce the dimensions of the feature matrix before
feeding it to the machine learning model. In PCA, the principal components are computed
and they are used to make a change in the basis of the data. Usually, the first few com-
ponents are used and the rest is ignored. PCA projects each data item onto the first few
components to get a lower-dimensional data while retaining as much of the variation of
the data as possible. Please refer to Algorithm 2 for an overall idea about the basic steps of
selecting the best configuration using PCA for optimal model performance. Our reduction
criterion is based on the accuracy of the validation set.
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Algorithm 1 Basic steps for determining the best training settings for the model using
ANOVA.

accuracies = [ ] . Empty list
for n = 1 to N do . N is the number of features

Determine the best n features using ANOVA.
Discard other features.
Train the model using the training set.
Evaluate the model using the validation set.
accuracies[n] = accuracy of the model on the validation set.

end for
choose the best configuration based on the accuracy maximum value.
Evaluate the model using the testing set.

Algorithm 2 Basic steps for determining the best training settings for the model using PCA.

accuracies = [ ] . Empty list
for n = 1 to N do . N is the number of features

Resize feature matrix to (observations, n) by PCA
Train the model using the training set.
Evaluate the model using the validation set.
accuracies[n] = accuracy of the model on the validation set.

end for
choose the best configuration based on the accuracy maximum value.
Evaluate the model using the testing set.

2.2.4. Feature Scaling

Standardization of the features was performed by removing the mean and scaling to
unit variance. For a sample x, the standard score is calculated as:

z =
(x− u)

s
(3)

where u stands for the mean of the samples, and s stands for the standard deviation of the
samples.

2.3. Machine Learning Models

Five machine learning models were used in this paper, namely, logistic regression
(LR), random forest (RF), support vector machine (SVM), multi-layer perceptron (MLP),
and XGBoost classifiers. For 10 different iterations, the dataset was randomly divided into
a training set, validation set, and testing set with proportions that are equal to 50%, 25%,
and 25%, respectively. Hyper-parameters tuning of the models is very important to obtain
optimal performance. Therefore, a grid search was used with each model to find the best
parameters for it. The accuracy of the validation set was our criterion that determines the
selection of best parameters as shown in Algorithms 1 and 2.

2.3.1. Logistic Regression

One of the most popular algorithms that are utilized to solve binary classification tasks
is the logistic regression (LR). It is considered a supervised learning approach that can be
used when the labels are either 0 or 1, as shown in Equation (4):

ŷ = P(y = 1|x)x ∈ Rnx (4)

where ŷ is the chance of y = 1, given the input features x, and the x is an nx—dimensional
vector. w refer to the parameters of logistic regression, which is also an nx—dimensional
vector together with b as a real number. Now, given an input x and the parameters w and b,
the output can be generated using linear function. However, this is not a good algorithm,
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because we want ŷ to be the chance that y = 1. Therefore, ŷ should be in the range between
0 and 1. To achieve that, a sigmoid function (σ) should be applied, see Equation (5).

ŷ = σ(wTx + b) (5)

2.3.2. Random Forest

Random forest (RF) is based on an ensemble for trees. Each tree depends on a col-
lection of random variables. For, a p-dimensional random vector X = (X1, X2, . . . , Xp)

T

represents the predictor variables and a real-valued response Y (random variable), the joint
distribution PXY(X, Y) is assumed to be unknown. A prediction function f (x) is needed
to be obtained to predict Y. The loss function L(Y, f (x)) can be used to determine the
prediction function. The prediction function is defined to minimize the expected value of
the loss, as shown in Equation (6).

EXY(L(Y, f (x))) (6)

2.3.3. Support Vector Machines

A special function called the kernel is the most important aspect of support machines
(SVM). The kernel converts the experimental data set from its space into a higher dimen-
sional space where the algorithm constructs a hyperplane that separates between classes.
On both sides of the separating plane, there are two parallel hyperplanes that must be
constructed. The borders of classes are defined by these hyperplanes. The more distance
between these parallel hyperplanes, the higher the accuracy of the SVM algorithm [27]. In
this study, a linear kernel was used in the SVM model.

2.3.4. Multi Layer Perceptron

Multi-layer perceptrons (MLPs) can approximate any continuous function, instead of
approximating only linear functions [28]. MLPs are composed of several neurons that are
organized in at least 3 layers:

• An input layer that receives the input features and distributes them to the first hidden
layer.

• One or more hidden layers. The input of the first hidden layer is the features dis-
tributed by the input layer, while the input of the other hidden layers is the output of
each perceptron from the previous layer.

• One output layer of perceptrons.

In this work, a MLP with one input layer (size 12 perceptrons), two hidden layers (size
24, 6 perceptrons), and one output layer (size 2 perceptrons) was used. The connections
between the neurons have weights that are adjusted during the learning process using the
backpropagation algorithm.

2.3.5. XGBoost

XGBoost stands for extreme gradient boosting which is an open-source library that
provides a framework for regularized gradient boosting. The goal of the XGBoost’s project
is to provide a library that is scalable, portable, and featured with distributed gradient
boosted decision tree. XGBoost implements gradient boosting, which an ensemble learning
approach combines the results from several decision trees for the creation of prediction
scores [29]. Characteristics of XGBoost include: a proportional shrinking of leaf nodes,
clever penalization of trees, newton boosting, implementation on single and distributed
systems, and extra randomization parameter.
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3. Experimental Results

The performance of our system in the first stage using Algorithm 1 is presented in
Table 2 and using Algorithm 2 is presented in Table 3. The performance of our system in the
second stage using Algorithm 1 is presented in Table 4 and using Algorithm 2 is presented
in Table 5. For 10 different iterations, the dataset was randomly divided into a training
set, validation set, and testing set with proportions that are equal to 50%, 25%, and 25%,
respectively. In each iteration, we calculate the classification accuracy; then, we estimate the
standard deviation for the ten values of accuracy. Features importance is estimated using
XGBoost classifier (the classifier of the best accuracy across the five tested machine learning
models) and SHAP library [30] , as shown in Figure 2. The first six features presented in
the figure are the same most important features across the five machine learning models.

Table 2. Quantitative evaluation of the first stage of our system when filter-based method is the
feature selection scheme. The values are average accuracy ± standard deviation.

LR RF SVM MLP XGBoost

Accuracy 79%± 0.35 81%± 0.54 81%± 0.33 80%± 0.39 84%± 0.22

Sensitivity 76%± 0.73 80%± 0.61 79%± 0.41 76%± 0.25 82%± 0.45

Specificity 81%± 0.38 82%± 0.42 83%± 0.15 82%± 0.68 85%± 0.19

# features 5 11 6 3 6

Table 3. Quantitative evaluation of the first stage of our system when PCA method is the feature
reduction scheme. The values are average accuracy ± standard deviation.

LR RF SVM MLP XGBoost

Accuracy 80%± 0.64 80%± 0.28 81%± 0.31 81%± 0.68 83%± 0.24

Sensitivity 79%± 0.77 78%± 0.45 79%± 0.58 79%± 0.51 81%± 0.64

Specificity 81%± 0.41 80%± 0.56 83%± 0.18 83%± 0.24 84%± 0.19

# dimensions 11 12 10 8 7

Table 4. Quantitative evaluation of the second stage of our system when filter-based method is the
feature selection scheme. The values are average accuracy ± standard deviation.

LR RF SVM MLP XGBoost

Accuracy 77%± 0.68 79%± 0.65 80%± 0.64 80%± 0.35 83%± 0.51

Sensitivity 74%± 0.39 79%± 0.22 80%± 0.37 78%± 0.64 81%± 0.77

Specificity 78%± 0.42 80%± 0.41 81%± 0.55 80%± 0.54 83%± 0.22

# features 8 10 6 5 6

Table 5. Quantitative evaluation of the second stage of our system when PCA method is the feature
reduction scheme. The values are average accuracy ± standard deviation.

LR RF SVM MLP XGBoost

Accuracy 77%± 0.37 77%± 0.41 79%± 0.62 80%± 0.55 81%± 0.23

Sensitivity 77%± 0.19 75%± 0.52 78%± 0.31 79%± 0.29 80%± 0.45

Specificity 79%± 0.31 79%± 0.33 81%± 0.71 80%± 0.48 82%± 0.18

# dimensions 10 11 9 6 7
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Figure 2. Features importance using XGBoost and SHAP library [30].

Figures 3 and 4 show how the classification accuracy of the classifiers changes accord-
ing to the number of the selected features in the first and second stages, respectively. A
receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnos-
tic ability of a binary classifier system as its discrimination threshold is varied. Figure 5
shows the ROC curves for the optimal machine learning models for classification stage 1
and classification stage 2.

Figure 3. Accuracy curves for the machine learning models in stage 1. XGBoost classifier results in
optimal accuracy.

Figure 4. Accuracy curves for the machine learning models in stage 2. XGBoost classifier results in
optimal accuracy.
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Figure 5. ROC curves for the optimal machine learning model in stage 1 and stage 2.

Tables 2 and 3 show that the first-stage performance of the five tested machine learning
methods using Algorithms 1 and 2, respectively. It can be noticed that all classifiers have
acceptable performance. When the filter-based method is the feature selection scheme,
Table 2 shows that the XGBoost classifier results in the best performance. SVM and RF
result in the same classification accuracy. However, SVM has an advantage over RF as the
former used fewer features (only 6) to achieve the same performance. Notably that MLP
used only three features to achieve 80% accuracy. The three features were RR, PaO2/FiO2,
and LDH. We can conclude that these features have the most discriminative power in
differentiating class 0 from other classes. To find whether there are significant differences in
the first-stage classification accuracy, when the filter-based method is the feature selection
scheme, paired t-tests between XGBoost (the classifier with the highest accuracy) and LR,
RF, SVM, and MLP are performed. The p-values are 0.002, 0.009, 0.01, and 0.005, respectively.
The p-values indicate that the classification accuracy is statistically improved using XGBoost
classifier over other classifiers. When the PCA method is the feature reduction scheme,
Table 3 shows that the XGBoost classifier also achieves the best performance. SVM and
MLP classifiers result in similar accuracy. However, MLP uses the smallest number of
dimensions resulting from the PCA. To find whether there are significant differences in the
first stage classification accuracy, when the PCA method is the feature reduction scheme,
paired t-tests between XGBoost (the classifier with the highest accuracy) and LR, RF, SVM,
and MLP are performed. The p-values are 0.007, 0.009, 0.04, and 0.02, respectively. The
p-values indicate that the classification accuracy is statistically improved using XGBoost
classifier over other classifiers.

Tables 4 and 5 show the second-stage performance of the five tested machine learning
models using Algorithm 1 and Algorithm 2, respectively. It can be noticed that all classifiers
have acceptable performance. In Table 4, XGBoost results in the best performance, similar
to the first-stage results. SVM, and MLP result in a similar performance in terms of
classification accuracy, however, MLP has an advantage over the SVM as the former
uses fewer features (only 5) to achieve the same performance. To find whether there are
significant differences in the second-stage classification accuracy, when the filter-based
method is the feature selection scheme, paired t-tests between XGBoost (the classifier with
the highest accuracy) and LR, RF, SVM, and MLP are performed. The p-values are 0.006,
0.017, 0.035, and 0.037, respectively. The p-values indicate that the classification accuracy is
statistically improved using XGBoost classifier over other classifiers. Similarly, Table 5 show
that the XGBoost classifier achieves the best performance over other classifiers, similar to
the first-stage results. To find whether there are significant differences in the second-stage
classification accuracy, when the PCA method is the feature reduction scheme, paired t-tests
between XGBoost (the classifier with the highest accuracy) and LR, RF, SVM, and MLP
are performed. The p-values are 0.007, 0.005, 0.016, and 0.03, respectively. Similar to the
results of the first-stage, the p-values indicate that the second-stage classification accuracy
is statistically improved using XGBoost classifier over other classifiers.
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4. Discussion

There is certainly some degree of variability in when clinicians feel the need to begin
either supplementary non-invasive ventilatory support and ventilatory support. Having
said that, indications for initiation of non-invasive ventilatory support (class 1) are fairly
standard across the United States, and include criteria such as a blood oxygen saturation
level below 90%, significant increase in the work of breathing (these include clinical signs
like stridor, use of accessory muscles of ventilation, increased respiratory rate, and the
more subjective factor of “oxygen hunger”, which is a perception on the patient’s part
that they are struggling to breath). The last element, which is a subjective feature, does
introduce a greater element of variability in who receives class 1 ventilatory support,
but other elements are more objective. Invasive ventilation, which involves intubation
and mechanical ventilation, is more objective still, as it is indicated when patients fail to
maintain blood oxygen saturations at or above 90% (hypoxemic respiratory failure) or who
are developing progressive retention of carbon dioxide in the blood stream (hypercapnic
respiratory failure) despite maximum non-ventilatory support.

The advantage of machine learning is not so much in helping clinicians decide whom
to intubate or place on supplemental oxygen—they already have a good idea of when to do
that. Rather, we are using the degree of ventilatory support as a surrogate for the severity
of COVID-19 disease. As such, clinicians could use this model to predict who will decline
most significantly, and it is these patients who should receive more aggressive treatment
with antivirals like Paxlovid or intravenous immunoglobulin, both of which are precious
resources.

To aid the clinicians, this study proposes a two-stage system for predicting the required
level of respiratory support for COVID-19 patients. In this study, different feature selec-
tion/reduction methods are investigated. Feature selection/reduction reduces the number
of features before training the models. This helps to reduce overfitting, improve accuracy,
and reduce training time. In addition, five machine learning classifiers have been tested.
The statistical analysis, performed in this study, indicate that the classification accuracies of
both the first and second stages are statistically improved using XGBoost classifier over
other classifiers XGBoost is a powerful classifier that works well in the studied classification
problem [18,21], thanks to its powerful implemented ensemble learning characteristic.

In the first and the second stages, the best achieving models used three important
features that have a strong discriminative power. The features are PaO2/FiO2, RR, and
LDH. The first one describes the number of breaths you take per minute. The second one
describes the ratio of arterial oxygen partial pressure to fractional inspired oxygen. The third
one describes a non-specific biomarker of infection, damaged heart muscle, skeletal muscle,
or red blood cells. The three most important features obtained using Algorithms 1 and 2
are the same features resulted from using SHAP library. XGBoost uses six features to
achieve 84% classification accuracy in the first stage. These features are PaO2/FiO2, RR,
LDH, Lymphocytes, CRP, Neutrophils. Lymphocyte is a type of white blood cells, CRP is
the level of C-reactive protein, which increases when there is inflammation inside the body
and Neutrophils is the ratio of neutrophils to lymphocytes, which describes the balance
between systemic inflammation and immunity. As it is expected, the most important two
features among these six feature are related to the respiratory system (PaO2/FiO2 and RR).

Despite the fact that our system is the first study to differentiate between three levels
of support, we provide here a rough comparison between the performance of our first
stage (minimal support vs others) and other methods presented in the literature. Note
that the comparison is not fair, since it is done on different data. However, it can give a
rough estimate of the potential of the first stage of the proposed system, compared to other
methods. Table 6 shows a comparison between the proposed methods and others. The only
system that results in a better area under the curve (0.97) than the proposed system is the
work of Bendavid et al. [22] However, the proposed approach uses a much higher number
of patients (3491 vs. 1061).
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Table 6. Quantitative Comparison between our method and other methods in the literature. AUC:
area under the curve.

Method AUC Number of Patients

Noupour et al. [15] 0.90 482

Kabbaha at al. [16] 0.72 1613

Zeidberg et al. [18] 0.81 1621 (training) + 1122 (test)

Burdick et al. [20] 0.87 197

Bolourani et al. [21] 0.77 11,525

Bendavid et al. [22] 0.97 1061

Proposed system 0.91 3,491

Based on the significant research on COVID-19’s clinical course and pathophysiol-
ogy, adding variables such as age, biological sex, and medical comorbidities, particularly
comborid cardiac, pulmonary, and metabolic conditions, may well enhance the predictive
accuracy of the system. While such work is currently underway, we cannot at present
comment on the exact added value of such data. Furthermore, when patients present de
novo to a hospital emergency department, there is often limited information on their exact
past medical history and comorbidities. Thus, we feel there is a value in a system that has
good predictive accuracy like PaO2/FiO2, respiratory rate, and LDH. Limitations of this
study include the use of a single dataset from one center. Another limitation is that all of
the instances are recorded at a single time point.

5. Conclusions

During COVID-19 pandemic, hospitals face considerable challenges regarding hospital
resources, including the required ventilation. Therefore, a system that provides clinicians
with the required level of respiratory support for each patient is of great importance, to
assign resources to patients who are in need. In this study, a machine learning-based system
is proposed for predicting the required level of respiratory support for COVID-19 patients.
The system is constructed in two stages; a classification stage between class 0 (minimal
support) and others, then a classification stage between class 1 (non-invasive support) and
2 (invasive support). To support the proposed system, different feature selection methods
are investigated, namely, ANOVA and recursive feature eliminations, and compared with a
PCA dimensionality reduction approach. The results show that the ANOVA feature selection
method yields the best results. In addition, five machine learning classifiers have been tested,
where the XGBoost classifier achieves the best performance for both the two classification
stages. Compared to other systems, the proposed system achieves competing accuracy and
is the first one to automatically differentiate between three levels of respiratory support.
Therefore, it may help in delivering the care properly to COVID-19 patients. Future work
should include system validation on external datasets from different centers, testing its
performance on data that are collected at different time points, and investigating the
effect of the addition of medical comorbidities, age, and sex, as input to the system. In
addition, the proposed system’s generalizability to solve other classification problems will
be investigated.
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