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Abstract: Hypertension is a major cause of mortality of millions of people worldwide. Cerebral
vascular changes are clinically observed to precede the onset of hypertension. The early detection
and quantification of these cerebral changes would help greatly in the early prediction of the disease.
Hence, preparing appropriate medical plans to avoid the disease and mitigate any adverse events.
This study aims to investigate whether studying the cerebral changes in specific regions of human
brains (specifically, the anterior, and the posterior compartments) separately, would increase the
accuracy of hypertension prediction compared to studying the vascular changes occurring over the
entire brain’s vasculature. This was achieved by proposing a computer-aided diagnosis system (CAD)
to predict hypertension based on cerebral vascular changes that occur at the anterior compartment,
the posterior compartment, and the whole brain separately, and comparing corresponding prediction
accuracy. The proposed CAD system works in the following sequence: (1) an MRA dataset of
72 subjects was preprocessed to enhance MRA image quality, increase homogeneity, and remove noise
artifacts. (2) each MRA scan was then segmented using an automatic adaptive local segmentation
algorithm. (3) the segmented vascular tree was then processed to extract and quantify hypertension
descriptive vascular features (blood vessels’ diameters and tortuosity indices) the change of which has
been recorded over the time span of the 2-year study. (4) a classification module used these descriptive
features along with corresponding differences in blood pressure readings for each subject, to analyze
the accuracy of predicting hypertension by examining vascular changes in the anterior, the posterior,
and the whole brain separately. Experimental results presented evidence that studying the vascular
changes that take place in specific regions of the brain, specifically the anterior compartment reported
promising accuracy percentages of up to 90%. However, studying the vascular changes occurring over
the entire brain still achieve the best accuracy (of up to 100%) in hypertension prediction compared to
studying specific compartments.

Keywords: hypertension; anterior; posterior; classification; MRA; vascular

1. Introduction

Hypertension is one of the severest and most common diseases nowadays. It is con-
sidered one of the leading contributors to death worldwide [1]. Severe adverse events of
hypertension include strokes, dementia, heart failure, kidney dysfunction, cognitive impair-
ment, and vision loss [2]. According to a 2017 guideline [3], categories of hypertension are
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as follows: normal (<120/<80 mmHg), elevated or prehypertension (120–129/<80 mmHg),
hypertension stage 1 (130–139 mmHg systolic blood pressure (BP) or 80–89 mmHg di-
astolic BP), and hypertension stage 2 (≥140 mmHg systolic BP or ≥90 mmHg diastolic
BP). Current blood pressure diagnosis tools such as sphygmomanometers can detect the
disease only after its onset. Recent studies observed that cerebral vascular changes start
to develop years before the onset of hypertension [4,5]. Change in blood vessels size has
been reported in the literature and linked to elevation of blood pressure in animals [6]
and in humans [7]. Vascular tortuosity excess and abnormalities have been correlated to
several vascular and non-vascular diseases including hypertension [8,9]. Additionally, the
correlation between cerebral vascular changes and hypertension detection has been studied
and validated in [10]. Thus, quantifying and tracking changes in vessels diameters and
tortuosity could be used as predictors for hypertension development. Most importantly, the
early detection and quantification of these cerebrovascular changes would help physicians
to recommend medical protocols to control the development of the disease and hopefully
to mitigate adverse events. Nevertheless, the process of extracting and quantifying these
features requires the accurate segmentation of cerebral vasculature at first. This makes the
extraction process a challenging task because there is a limitation of accurate cerebrovas-
cular segmentation algorithms in the literature. The need for an automatic segmentation
algorithm for the brain’s vascular system is inevitable. Vascular segmentation is a basic
step in almost every medical imaging analysis system. However, segmentation of cerebral
blood vessels is a very challenging task due to the complex geometry of human brains’
vasculature, the dynamic range of intensities, the density of tiny vessels, in addition to the
inherent challenges in the Magnetic Resonance Angiography (MRA) scans such as noise
artifacts, bias, and acquisition errors. Unfortunately, existing cerebrovascular segmenta-
tion methods suffer from limitations due to one or more of the aforementioned problems.
Additionally, most algorithms are not suitable for pathological vessels because of adopted
assumption of the vessel circular cross section which is only valid for healthy blood ves-
sels. For instance, Phellan et al. [11] have proposed an automatic vascular segmentation
algorithm using a deep convolutional neural network (CNN) that was able to segment
cerebrovasculature with a Dice Similarity Coefficient (DSC) ranging between 0.764 and
0.786. However, their algorithm was tested using MRA dataset of healthy subjects only.
Zhao et al. [12] have proposed a 2-D segmentation algorithm where they first separated
vessels from background using volume projection, 2-D segmentation, and back projection
procedures. Then, they utilized a stochastic expectation maximization algorithm to estimate
the probability density function of the remaining undetected vessels. While their method
was able to detect vessels even in low-contrast images, it was computationally expensive.
Feng et al. [13] have proposed a statistical analysis method to segment brain blood vessel
based on vessels’ intensities. Using vessels’ intensities only in the segmentation process is
not sufficient due to the wide range of intensity values, in addition to the change of vessels’
intensities according to the velocity of the blood flow. Specifically, the velocity of blood flow
in vessels, particularly small ones, is slow which makes the intensity of these vessels similar
to other brain tissues. Thus, some vascular details could not be detected. Besides, manual
and semi-automatic segmentation methods which are the gold standards, are error-prone,
time consuming, tedious, and may suffer from intra- or inter-observer variability.

The blood supply to the brain is provided by two arterial axes on each side of the
neck, the internal carotid giving origin to the anterior circulation (AC) and vertebral ar-
teries giving origin to the posterior circulation (PC). Hypertension and intracranial large
artery atherosclerosis are well known risk factors for cerebrovascular diseases including
both hemorrhagic and ischemic strokes [14]. Systemic hypertension is also involved in
the development of aneurysms via increased shear stress and pressures on the arterial
wall, and change in the shear stress gradients precipitate the aneurysms development [15].
Differential associations with vascular risk factors and stroke mechanisms have been cited
between the posterior and anterior intracranial vasculatures, and pathological evidence
exists that more advanced brain arterial aging is noted in the posterior circulation com-
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pared with the anterior circulation [14]. Anterior and posterior circulation (PC) strokes are
reviewed as separate entities, with different underlying pathogenesis, natural histories,
and potential responsiveness to interventions such as anticoagulation [16]. Also interest-
ingly, hypertensive disease-induced primary intracerebral hemorrhage occurs mainly at the
small penetrating blood vessels in the posterior cerebral circulation rather than the anterior
cerebral circulation. This may be explained by the fact that the responses of the posterior
cerebral blood flow (CBF) in several physiological conditions (e.g., orthostatic stress, hy-
poxia, dynamic resistance exercise, heat stress, etc.) are different from those of the anterior
CBF and posterior cerebral vasculature may not be able to properly regulate an elevation in
blood pressure compared with the anterior cerebral vasculature [17]. Another difference
between the anterior and posterior circulations is that intracranial aneurysms arise from the
anterior cerebral circulation more than the posterior circulation and the AC aneurysms tend
to have higher risk of rupture [18]. Based on that , it is obvious that several cerebrovascular
diseases have different impacts on the anterior and posterior compartments in human
brains and are also affected differently by the anterior and posterior blood circulations.
Thus, there is a possibility that hypertension-related cerebrovascular changes may affect
one compartment more than the other. In this case, the study of cerebrovascular changes
in each compartment independently may improve the clinical and prognostic value of
hypertension diagnosis. In this manuscript, we present a computer-aided diagnosis (CAD)
system that aims at investigating whether studying the cerebral changes in specific regions
of human brains ( specifically, the anterior, and the posterior compartments) separately,
would increase the accuracy of hypertension prediction compared to studying vascular
changes occurring over the entire brain’s vasculature.

2. Methods

Hypertension is predicted in this study through the extraction and quantification of
cerebral vascular changes occurring over a 2-year study in human brains. Descriptive
hypertension-related cerebral features (explained in Section 2.2) are estimated and used
to build a feature vector for each subject. Feature vectors (explained in Section 2.3) are
processed by classifiers to determine whether each subject is normal, prehypertensive, or
hypertensive. The ground truth actual class labels are already known for each subject, and
we provide the class label for all subjects to the classifiers as well. Classifiers then process
the feature vectors and decide on a predicted class label for each subject. Predicted labels
are then compared to actual/real class labels and the classification accuracy is determined.
The proposed CAD system for the early detection of hypertension is composed of three
different modules (Figure 1).

Figure 1. A block diagram showing different modules of the proposed CAD system for classifying
hypertension data.

The first module is used for preprocessing and segmenting MRA scans to delineate
the cerebral vasculature of each subject. The second module quantifies and estimates the
vascular features that describe the vascular changes that are observed to precede the onset
of hypertension. The third module is a classification module that processes MRA data and
blood pressure measurements, and reports the accuracy of hypertension prediction based
on the analysis of the extracted descriptive features in different regions of human brains. In
this section, the three modules of the proposed CAD system are explained in detail.
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2.1. Cerebral Vasculature Segmentation

The segmentation algorithm presented in this manuscript is automatic, adaptive, and
accurate in delineating cerebral vasculature [10]. As shown in Figure 2, the algorithm starts
with a preprocessing step to eliminate noise artifacts such as acquisition errors and image
biasing that might result from the magnetic field of the MRA scanner. In this step, a bias
correction algorithm was used to resolve inconsistencies of data [19]. Then, to enhance
image homogeneity, the 3D Generalized Gauss-Markov Random Field (3D GGMRF) was
employed. The 3D GGMRF model analyzes the spatial homogeneous pairwise interactions
between each voxel and its 26 neighborhood system and minimizes differences between
the voxel and its neighbors [20]. A skull stripping approach [21] was then applied on the
enhanced images to remove cerebral fat tissues that usually look like cerebral blood vessels.
This approach employs a Markov-Gibbs Random Field (MGRF) model and a geometric
deformable (brain iso-surface) model to preserve the topology of the cerebral vasculature
during the skull stripping.

Figure 2. Module 1: MRA data preprocessing and segmentation.

After data preprocessing, the vasculature tree was delineated in two steps. First, a
Linear Combination of Discrete Gaussians (LCDG) [22] was used to produce the initial
segmentation of the vascular tree by estimation of the marginal probability density of MRA
voxel values for brain vessels and other cerebral tissues. This initial segmentation, however,
may miss some tiny blood vessels in the vascular tree. This is why the second step in the
segmentation process is very essential. In the second step, a 3D local adaptive segmentation
algorithm [21] was applied to refine the initial segmented vasculature by finding any
missing details, specifically the small vessels. This adaptive algorithm divides each image
into a set of connected components. Then, an adaptive search window is centered over
each connected component where a new threshold is calculated to separate blood vessels
from other brain tissues. Cerebral segmentation using this algorithm achieved a sensitivity
of 94.82%, a specificity of 99.00%, a dice similarity coefficient of 92.23%, and an average
volume difference of 10.03% compared to state of the art algorithms [10]. Figures 3 and 4
present an output sample of the segmentation module. Additionally, this algorithm is fully
automatic and thus, it resolves the associated problems of semi-automatic and automatic
segmentation methods such as time-consuming and inter-observer variability. Unlike most
vascular segmentation algorithms in the literature [23], this algorithm has no constraints
regarding the linearity or the circular cross-sections of blood vessels because it can segment
both healthy and unhealthy blood vessels accurately and efficiently. The algorithm is
also able to delineate even tiny blood vessels (≤1 mm) which makes it a very good fit in
the proposed CAD system because it is clinically known that the impact of hypertension
development mainly affects tiny blood vessels [24,25]. In addition, the segmentation
approach overcomes and handles the noise in the MRA (e.g., microscopic, or mesoscopic
noisy disturbance) images through homogeneity enhancement using the 3D GGMRF model
which minimizes the energy between each voxel and its 26-neighborhood to enhance the
homogeneity and remove any noise.



Appl. Sci. 2022, 12, 4291 5 of 13

(a) (b) (c)

Figure 3. (a) A sample of a 2D raw image, (b) After preprocessing, (c) Initial segmentation using LCDG.

(a) (b)

Figure 4. (a) Final result using 3D adaptive segmentation algorithm, (b) A 3D visualization of
(a) using a growing tree model.

2.2. Extraction of Cerebrovascular Descriptive Features

The change in cerebral vascular tree was quantified by the estimation of the changes in
blood vessel diameter and tortuosity [10]. The change in vascular diameter was estimated
by calculating medians of the vascular radii. The cumulative distribution function (CDF) of
the radii was estimated using the cumulative distribution of the probability distribution
function (PDF). A CDF value associated with each MRA volume defines the average of
blood vessel diameters in that volume. It gives a probability estimate for vessels existing at
or below a specific diameter value.

Vascular tortuosity changes were quantified using two of the significant types of
curvatures in surface theory, namely, Mean and Gaussian curvatures. Two curvature
metrics suffice to completely describe the curvature of a two-dimensional manifold. These
could be the principal curvatures or two independent functions thereof. Gaussian and
mean curvatures are both traditional, which allows for easy comparison of our results
with those obtained by other means, and intuitive, being the determinant and half-trace
of the shape operator of the surface. Besides that, Gaussian curvature is significant as an
intrinsic (scalar) metric of curvature that does not depend on the embedding. In Contrast,
the mean curvature is an extrinsic measure that depends on the embedding. Using both
extrinsic and intrinsic measures would provide a comprehensive means for quantifying the
change in vascular tortuosity. Estimation of these curvatures was done across the entire
cerebral vascular tree for each subject. Mean curvature is computed as the average of the
principal curvatures K1, K2, while the Gaussian curvature is computed as the multiplication
of K1, K2. Mean curvature = (K1 + K2)/2; Gaussian curvature = K1 ∗ K2. As shown in
Figure 5, the estimated features for each subject in the dataset are used along with the
corresponding blood pressure measurements to build the features vectors which will be
used in the classification process.
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Figure 5. Module 2: Estimation of descriptive vascular features and building feature vectors.

2.3. Data Preparation and Classification

The classification module (Figure 6) was used to classify the elements in the MRA
dataset into either normal, prehypertensive, or hypertensive subjects. The inputs for this
module were the feature vectors built in module 2. We classify subjects based on these
features for two reasons: (1) these features were clinically observed to precede the onset of
hypertension, (2) we wanted to prove the efficacy of using these features to predict hyper-
tension before its symptomatic onset. Using supervised learning techniques, classification
results could compare predicted labels to actual labels. The reported classification accuracy
would measure the efficacy of using the selected vascular features in the early detection
of hypertension. Each feature vector was built using values that represent the change in
vascular diameters, vascular tortuosity, and differences between blood pressure measure-
ments taken at two time points(tbaseline, t f ollowup) separated by approximately 700 days.
Blood pressure measurement information from both the baseline and the follow-up have
been used in the classification process to determine whether a change in the blood pres-
sure has occurred or not (either decrease or increase). This was done by incorporating
the differences between blood pressure measurements taken at baseline and follow-up
with a sign (−/+) included to determine if the change was an increase or a decrease. For
instance, in Table 1, delta MAP (Mean Arterial Pressure) refers to the difference between
MAP values at tbaseline and t f ollowup. Similarly, detla SBP/delta DBP refers to the difference
of the systolic BP/diastolic BP values at tbaseline and t f ollowup. Some statistical values (i.e.,
average, and median) were also calculated for vascular diameter and tortuosity changes
and included in each feature vector. Additionally, values in feature vectors have gone
through a normalization process to remove any outliers or biasing and to enhance the
homogeneity of data. Feature normalization was performed using the scaling (min-max)
method that scales the values of each feature in a range between the minimum and maxi-
mum values of that feature for all dataset subjects. Each feature vector was assigned a label
that indicates to which class each specific subject belongs. The three class labels are: normal,
prehypertensive, and hypertensive, and were defined based on the blood pressure readings
and the 2017 hypertension guidelines [3]. Different linear and non-linear classifiers with
different parameters and validation scenarios were used in this module to test the accuracy
of the classification based on the cerebral vascular changes occurring over the 700 day
period.

Figure 6. Module 3: Classification of data into normal, prehypertensive, and hypertensive.
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Table 1. Classification Accuracy based on the whole brain, anterior compartment, and posterior
compartment.

Classifiers Kernel Features Validation-
Scenario

Whole Brain
Accuracy %

Anterior
Accuracy %

Posterior
Accuracy %

Ensemble Bagged
Trees

Median of diameter
change, median of
tortuosity change,
delta MAP, delta SBP,
delta DBP

5-fold 75 72.2 69.4

KNN Weighted

Average of diameter
change, Average of
tortuosity change,
delta MAP, delta SBP,
delta DBP

10-fold 77.8 77.8 66.4

KNN Fine

Diameter change,
tortuosity change,
delta MAP, delta SBP,
delta DBP

25%
hold-out 88.9 55.6 83.3

Ensemble Subspace
KNN

Diameter change,
tortuosity change,
delta MAP, delta SBP,
delta DBP

25%
hold-out 88.9 55.6 83.3

Ensemble Bagged
Trees

Diameter change,
tortuosity change,
delta MAP, delta SBP,
delta DBP

15%
hold-out 90 90 70

KNN Weighted
Diameter change,
tortuosity change,
delta SBP, delta DBP

15%
hold-out 90 80 60

KNN Cosine

Diameter change,
tortuosity change,
delta MAP, delta SBP,
delta DBP

20%
hold-out 92.9 71.4 71.4

Ensemble RUSBoosted

Diameter change,
tortuosity change,
delta MAP, delta SBP,
delta DBP

20%
hold-out 100 85.7 57.1

3. Experimental Results
3.1. Material and Procedure

A dataset of 72 subjects of middle age (age: 35:62 years) was used in this study. The
dataset includes an MRA scan and blood pressure measurements for each subject. The
dataset was acquired and approved by the Institutional Review Board (IRB) at the university
of Pittsburgh with accordance to relevant regulations and guidelines. Initial screening via
phone calls was made with each participant to ensure eligibility. All participants provided
informed consent before any study procedures. Participants were enrolled in the study with
the following exclusion criteria: (1) general medical conditions: ischemic coronary artery
disease, pregnancy, chronic liver disease, cancer (treatment < 12 months), diabetes mellitus
(fasting blood glucose > 125 mg/dL), or chronic kidney disease (creatinine > 1.2 mg/dL);
(2) neuropsychiatric conditions: multiple sclerosis, stroke, epilepsy, serious head injury,
brain tumor, and major mental illness; (3) using prescription medications for hypertension
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and psychotropic drugs. MRA scans were acquired using a 3T Trio TIM scanner with a
12-channel phased-array head coil. Each MRA scan is composed of about 160 slices with
a thickness of 0.5 mm, a resolution of 384 × 448, a flip angle of 15 degrees, a repetition
time of 21 ms, and an echo time of 3.8 ms. MRA scans were acquired two times sepa-
rated by approximately 700 days. Blood pressure measurements were gathered using the
auscultatory technique with cuff size appropriate to patient arm after giving him/her a
seated rest of 5-min two times over the 700 days too. In each time, four readings were
taken from each patient in two consecutive days (two readings taken in each day sepa-
rated by at least 1-min), and the final measurement was calculated from the arithmetic
average of the four readings. MAP was calculated from the blood pressure readings as,
MAP = (2 ∗ Diastolic BP + Systolic BP)/3.

3.2. Classification Results

Three different experiments have been conducted in this study and were implemented
using the built-in classification learner, MATLAB R2021b, using a set of linear and non-
linear classifiers available with default parameters of the classification learner and with
different available validation scenarios. The first experiment was conducted using the
MRA scan for the entire brain. In the other two experiments, only part of the brain was
studied. Only the anterior region of the brain was included in the second experiment, while
the third experiment was conducted using the posterior region of the brain only. Table 1
presents the results in terms of the accuracy percentages achieved in each experiment using
different classifiers with different parameters and validation scenarios. A general look
at Table 1 will show that the analysis of the cerebral vascular changes in the whole brain
resulted in the best accuracy in classifying the data into either normal, prehypertensive,
and hypertensive. Actually, six out of the eight classification scenarios achieved the best
accuracy in the whole brain experiment. In the remaining two scenarios, the first and
second experiments achieved the same accuracy percentages. Classification using ensemble
random forest (Bagged trees) classifier with a 15% hold-out validation scenario recorded
accuracy of 90% in both the first experiment (whole brain) and the second experiment
(anterior region) . While using K-nearest neighbour (KNN) classifier with a distance weight
(weighted) and a 10-fold validation scenario, achieved 77.8% accuracy in both the first
and second experiment. No other classification scenarios in the second (anterior region)
or third (posterior region) experiments outperformed the results of the first (whole brain)
experiment in terms of recorded accuracy percentages.

In addition, the accuracy percentages resulted in the second experiment (anterior
region) from ensemble (bagged trees), KNN (weighted), and ensemble random undersam-
pling boosting (RUSBoosted) classifiers were higher than accuracy percentages resulted in
the third experiment (posterior region). Whereas using the KNN classifier with a cosine dis-
tance metric (cosine) resulted in 71.4% accuracy in both the second and third experiments.
In contrast, the third experiment (posterior region) outperformed the second experiment
(anterior region) in only two cases; using the subspace ensemble with nearest neighbor
learners (subspace KNN) classifier, and the KNN with k set to equal 1 (fine) classifier with
accuracy of 83.3% in both cases.

The features used in the classification had an impact on the results as shown in
Table 1. (The distributions of the vascular diameters and tortuosity features are shown
in Figures 7–9). The best accuracy percentages resulted in each of the experiments were
achieved using the set of features that included values to represent vascular diameter
change, vascular tortuosity change, delta MAP, delta SBP, and delta DBP. The best accuracy
recorded was 100% in the first experiment using ensemble (RUSBoosted) classifier, 90%
in the second experiment using ensemble (bagged trees) classifier, and 83.3% in the third
experiment using either KNN (fine) or ensemble (subspace KNN) classifiers. Whereas
using the feature set that included only the median of vascular diameters, median of
tortuosity index, delta MAP, delta SBP, and delta DBP resulted in decreased accuracy
percentages in all three experiments as follows: 75%, 72.2%, and 69.4% for the first, second,
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and third experiment, respectively. Similarly, using a feature set that combines the average
of vascular diameter, average of vascular tortuosity, delta MAP, delta SBP, and delta DBP
only, recorded accuracy of 77.8% in the first and second experiments and 66.4% for the
third experiment. To sum up, the first experiment that studied the whole brain vasculature
achieved the best accuracy in the majority of classification scenarios, followed by the second
experiment where the anterior compartment in human brain was studied. Whereas the
third experiment where the posterior compartment was studied reported the least accuracy
percentages (Figure 10).

(a) (b)

Figure 7. Features distributions: (a) Averages of vascular radii, (b) Medians of vascular radii.

(a) (b)

Figure 8. Features distributions: (a) Averages of Mean curvatures, (b) Medians of Mean curvatures.
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(a) (b)

Figure 9. Features distributions: (a) Averages of Gaussian curvatures, (b) Medians of Gaussian curvatures.

Figure 10. Classification accuracy in whole brain, anterior, and posterior compartments for different
classifiers and validation scenarios.

4. Discussion

To the best of our knowledge this is the first study to investigate the cerebrovascular
changes in different parts of human brains and their role in hypertension prediction.
The question raised in this study was: would the independent study of cerebral vascular
changes in the anterior or the posterior compartments improve the accuracy of hypertension
prediction or not compared to studying changes over the entire brain. Answering this
question will help clinicians in determining which part of human brains is more vulnerable
(anterior, posterior, or the entire brain) to hypertension-related cerebrovascular changes.
This could help them figure out the best protocols in dealing with this medical concern. The
experimental results answered this question by proving that the changes taking place in
the entire cerebral vasculature contribute to the development of hypertension and are more
descriptive than changes occurring in either the anterior or the posterior compartments
only. Additionally, it shows evidence that hypertension development is contributing to
cerebral changes in the entire brain rather than affecting local specific compartments.
One challenge in studying the change of cerebrovasculature of human brains is that we
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cannot claim a specific cut-off for the cerebral changes that indicates whether a specific
individual will be hypertensive or not. This is due to the high inter-variability between
individuals’ cerebrovasculatures, which was considered one of the main obstacles in the
road of developing accurate and automatic cerebrovascular segmentation algorithms. High
inter-person variability of the vascular tree hinders the creation of a common atlas to
be used for segmentation, as done for other human organs. However, in our current
study, this burden is carried out and solved by the neural networks and classification
algorithms. We provided these classifiers with a part of the available data along with the
actual class labels for each subject. The discriminative power of these classifiers was used
to investigate these data and build patterns and associations describing what a normal
cerebrovasculature looks like and what a hypertensive cerebrovasculature looks like. After
the classifiers find these patterns and associations and build their own models, we have
presented new unidentified data (without class labels) to them, and they could successfully
predict the actual true class labels with higher accuracy as indicated in the results section.
This means that the classification algorithms could successfully use the cerebral vascular
change data and find appropriate patterns for how an individual is either normal or
hypertensive. Therefore, the generated classification models are considered reliable for
the hypertension prediction task. Additionally, the high classification accuracy means that
the cerebral features (that describe the cerebral vascular changes that lead to hypertension
development) used in the classification could successfully be used to predict hypertension
before its onset. Using these features and a trained classifier allows the CAD system to
be able to tell whether a person with these specific cerebral vascular features a potential
hypertensive patient is or not. Another limitation of our study is that the size of the
MRA data was limited to 72 patients. However, this study required a long-term follow-up
period of more than 700 days. This follow-up period enabled us to measure, track, and
quantify cerebral vascular changes but limited the number of patients we could recruit and
successfully follow-up after 700 days. In addition, and to the best of our knowledge, there
are no free standard databases available in this field. Despite this limitation, the cerebral
vascular changes in the 72 subjects were adequate to enable classifiers to draw successful
patterns, rules, and associations for discriminating between normal, prehypertensive, and
hypertensive subjects.

5. Conclusions

An MRA-based CAD system has been presented in this manuscript to analyze the
impact of vascular changes occurring over time in different regions of human brains on
the development of hypertension. The study analyzed the effectiveness of considering
vascular changes that occur in the entire brain versus considering vascular changes occur-
ring at local regions of the brain, specifically, the anterior and posterior compartments, in
predicting hypertension. Using supervised classification techniques, the study tested the
accuracy of using descriptive vascular features in the entire brain, and in its different local
compartments in classifying data into either normotensive, prehypertensive, or hyperten-
sive. Experimental results showed that the vascular changes that occurred in the anterior
compartment are more predictive of hypertension development than vascular changes
occurring in the posterior compartment. Moreover, results prove that the analysis of the
vasculature changes occurring in whole brain might be more predictive of hypertension
than just looking at changes at specific compartments. This means that the changes taking
place in the entire cerebral vasculature contribute to the development of hypertension. In
addition, the adverse effects of hypertension development are likely extending to harm the
whole vascular system in human brains rather than causing harm to specific compartments.
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