31 research outputs found

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1 of pp collision data collected by the LHCb experiment at a centre-of-mass energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is associated with the ratio of fragmentation fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x 10^{-5}. The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/- 0.9(syst.))%. Both measurements are the most precise to date and are in agreement with the previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Introduction: Staying Out of Court

    Get PDF
    The ways court procedures can be avoided is a classical theme in socio-legal studies and criminology. The preface to a book published on that theme by the Erasmus School of Law in 1988, on the occasion of its 25th anniversary, covers the then dominant view very well: ‘They [people who advocate out of court settlements, RvS] consider the judge as an ultimum remedium. And that is how it often should be’. Topics covered in that jubilee volume ranged from arbitration and administrative regulation to diversion and alternative dispute settlement. Now, however, it is striking to see that not only the topics in this issue of the Erasmus Law Review differ substantially from those of twenty years ago but that the tone is also quite different. The initial optimism and the belief that avoiding formal court procedures is essentially a good thing seem to have made way for a more sceptical attitude. Here it is questioned whether extra-legal regulations and out of court settlements actually do diminish the number of court procedures and whether this would be desirable.

    Observation of CP violation in B+ to DK+ decays

    Get PDF
    An analysis of B+ to DK+ and B+ to Dpi+ decays is presented where the D meson is reconstructed in the two-body final states: K+pi-, K+K-, pi+pi- and pi+K-. Using 1.0 fb-1 of LHCb data, measurements of several observables are made including the first observation of the suppressed mode B+ to DK+, D to pi+K-. CP violation in B+ to DK+ decays is observed with 5.8 sigma significance

    Measurement of the B0–B0 oscillation frequency Δmd with the decays B0→D−π+ and B0→ J/ψK∗0

    Get PDF
    The B 0 –B 0 oscillation frequency Δmd is measured by the LHCb experiment using a dataset corresponding to an integrated luminosity of 1.0 fb−1 of proton–proton collisions at √ s = 7 TeV, and is found to be Δmd =0.5156±0.0051 (stat.)±0.0033 (syst.) ps−1 . The measurement is based on results from analyses of the decays B 0 → D −π + (D − → K +π −π −) and B 0 → J/ψK ∗0 (J/ψ →Ό +ÎŒ −,K ∗0 → K +π −) and their charge conjugated modes

    Prompt charm production in pp collisions at &#8730;<span style="text-decoration:overline">s</span>=7 TeV

    Get PDF
    Charm production at the LHC in pp collisions at s√=7 TeV is studied with the LHCb detector. The decays D0→K−π+, D+→K−π+π+, D⁎+→D0(K−π+)π+, D+s→ϕ(K−K+)π+, Λ+c→pK−π+, and their charge conjugates are analysed in a data set corresponding to an integrated luminosity of 15 nb−1. Differential cross-sections dσ/dpT are measured for prompt production of the five charmed hadron species in bins of transverse momentum and rapidity in the region 0&#60;pT&#60;8 GeV/c and 2.0&#60;y&#60;4.5. Theoretical predictions are compared to the measured differential cross-sections. The integrated cross-sections of the charm hadrons are computed in the above pT-y range, and their ratios are reported. A combination of the five integrated cross-section measurements gives σ(ccÂŻ)pT&#60;8 GeV/c,2.0&#60;y&#60;4.5=1419±12(stat)±116(syst)±65(frag) Όb, where the uncertainties are statistical, systematic, and due to the fragmentation functions

    Measurement of the Ds+ - Ds- production asymmetry in 7 TeV pp collisions

    Get PDF
    Heavy quark production in 7 TeV centre-of-mass energy pp collisions at the LHC is not necessarily flavour symmetric. The production asymmetry, A_P, between Ds+ and Ds- mesons is studied using the \phi\pi(+/-) decay mode in a data sample of 1.0/fb collected with the LHCb detector. The difference between \pi+ and \pi- detection efficiencies is determined using the ratios of fully reconstructed to partially reconstructed D*(+/-) decays. The overall production asymmetry in the Ds rapidity region 2.0 to 4.5 with transverse momentum larger than 2 GeV is measured to be A_P=(-0.33 +/- 0.22 +/- 0.10)%. This result can constrain models of heavy flavour production.Comment: 13 pages, 10 figures, updated to published versio
    corecore