39 research outputs found

    Numerical Simulation of a Hollow-Core Woodpile-Based Mode Launcher for Dielectric Laser Accelerators

    Get PDF
    Hollow core microstructures powered by infrared lasers represent a new and promising area of accelerator research, where advanced concepts of electromagnetism must be used to satisfy multiple requirements. Here, we present the design of a dielectric electromagnetic band gap (EBG) mode launcher–converter for high-power coupling in dielectric laser accelerators (DLAs). The device is based on a silicon woodpile structure, and it is composed of two perpendicularly coupled hollow-core waveguides—a transverse electric (TE)-like mode waveguide (excited from laser power) and a transverse magnetic (TM)-like mode (accelerating) waveguide—in analogy with the TE10-to-TM01 waveguide mode converters of radio frequency (RF) linear accelerators (LINACs). The structure is numerically designed and optimized, showing insertion losses (IL) <0.5 dB and efficient mode conversion in the operating bandwidth. The operating wavelength is 5 μm, corresponding to a frequency of ≈60 THz, in a spectral region where solid-state continuous-wave (CW) lasers exist and are actively developed. The presented woodpile coupler shows an interaction impedance in the order of 10 kΩ, high power handling and efficiency

    GeV-Class two-fold CW linac driven by an arc-compressor

    Get PDF
    We present a study of an innovative scheme to generate high repetition rate (MHz-class) GeV electron beams by adopting a two-pass two-way acceleration in a super-conducting Linac operated in Continuous Wave (CW) mode. The beam is accelerated twice in the Linac by being re-injected, after the first pass, in opposite direction of propagation. The task of recirculating the electron beam is performed by an arc compressor composed by 14 Double Bend Achromat (DBA). In this paper, we study the main issues of the two-fold acceleration scheme, the electron beam quality parameters preservation (emittance, energy spread), together with the bunch compression performance of the arc compressor, aiming to operate an X-ray Free Electron Laser. The requested power to supply the cryogenic plant and the RF sources is also significantly reduced w.r.t a conventional one-pass SC Linac for the same final energy

    OPTIMIZING RF LINACS AS DRIVERS FOR INVERSE COMPTON SOURCES: THE ELI-NP CASE

    Get PDF
    The design guide-lines of RF Linacs to fulfil the requirements of high spectral density Inverse Compton Sources for the photo-nuclear science are mostly taken from the expertise coming from high brightness electron Linacs driving X-ray FEL's. The main difference is the quest for maximum phase space density (instead of peak brightness), but many common issues and techniques are exploited, in order to achieve an optimum design and layout for the machine. A relevant example in this field is the design of the hybrid C-band multi-bunch RF Linacs for the ELI-NP Gamma Beam System, aiming at improving by two orders of magnitude the present state of the art in spectral density available for the gamma-ray beam produced

    BriXs ultra high fluxinverse compton source based on modified push-pull energy recovery linacs

    Get PDF
    We present a conceptual design for a compact X-ray Source BriXS (Bright and compact X-ray Source). BriXS, the first stage of the Marix project, is an Inverse Compton Source (ICS) of X-ray based on superconducting cavities technology for the electron beam with energy recirculation and on a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz, producing 20–180 keV monochromatic X-Rays devoted mainly to medical applications. An energy recovery scheme based on a modified folded push-pull CW-SC twin Energy Recovery Linac (ERL) ensemble allows us to sustain an MW-class beam power with almost one hundred kW active power dissipation/consumption

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Study of the B-c(+) -> J/psi D-s(+) and Bc(+) -> J/psi D-s*(+) decays with the ATLAS detector

    Get PDF
    The decays B-c(+) -> J/psi D-s(+) and B-c(+) -> J/psi D-s*(+) are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb(-1) of pp collisions collected at centre-of-mass energies root s = 7 TeV and 8 TeV, respectively. Signal candidates are identified through J/psi -> mu(+)mu(-) and D-s(()*()+) -> phi pi(+)(gamma/pi(0)) decays. With a two-dimensional likelihood fit involving the B-c(+) reconstructed invariant mass and an angle between the mu(+) and D-s(+) candidate momenta in the muon pair rest frame, the yields of B-c(+) -> J/psi D-s(+) and B-c(+) -> J/psi D-s*(+), and the transverse polarisation fraction in B-c(+) -> J/psi D-s*(+) decay are measured. The transverse polarisation fraction is determined to be Gamma +/-+/-(B-c(+) -> J/psi D-s*(+))/Gamma(B-c(+) -> J/psi D-s*(+)) = 0.38 +/- 0.23 +/- 0.07, and the derived ratio of the branching fractions of the two modes is B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi D-s(+) = 2.8(-0.8)(+1.2) +/- 0.3, where the first error is statistical and the second is systematic. Finally, a sample of B-c(+) -> J/psi pi(+) decays is used to derive the ratios of branching fractions B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi pi(+) = 3.8 +/- 1.1 +/- 0.4 +/- 0.2 and B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi pi(+) = 10.4 +/- 3.1 +/- 1.5 +/- 0.6, where the third error corresponds to the uncertainty of the branching fraction of D-s(+) -> phi(K+ K-)pi(+) decay. The available theoretical predictions are generally consistent with the measurement

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    A bi-periodic X-Band cavity for SPARC

    No full text
    Abstract In order to produce a high brightness electron beam for the Frascati Linac coherent light source (SPARC) the use of an accelerating section with frequency equal to the fourth harmonic of the main S-Band Linac frequency is needed. This paper discusses the design and the realization of a compact X-Band linear accelerating section for obtaining 5 MV average accelerating gradient, working at a frequency of 11.424 GHz and operating on the π / 2 standing wave mode. Numerical predictions compared with measurements made on a copper prototype at room temperature are reported
    corecore