490 research outputs found

    Forward Neutral Pion Transverse Single Spin Asymmetries in p+p Collisions at \sqrt{s}=200 GeV

    Get PDF
    We report precision measurements of the Feynman-x dependence, and first measurements of the transverse momentum dependence, of transverse single spin asymmetries for the production of \pi^0 mesons from polarized proton collisions at \sqrt{s}=200 GeV. The x_F dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p_T dependence at fixed x_F are not consistent with pQCD-based calculations.Comment: 6 pages, 4 figure

    Observation of the antimatter helium-4 nucleus

    Get PDF
    High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4Heˉ^4\bar{He}), also known as the anti-{\alpha} (αˉ\bar{\alpha}), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4Heˉ^4\bar{He} counts were detected at the STAR experiment at RHIC in 109^9 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg

    Inclusive charged hadron elliptic flow in Au + Au collisions at sNN\sqrt{s_{NN}} = 7.7 - 39 GeV

    Get PDF
    A systematic study is presented for centrality, transverse momentum (pTp_T) and pseudorapidity (η\eta) dependence of the inclusive charged hadron elliptic flow (v2v_2) at midrapidity(η<1.0|\eta| < 1.0) in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants (v24v_2{4}), are presented in order to investigate non-flow correlations and v2v_2 fluctuations. We observe that the difference between v22v_2{2} and v24v_2{4} is smaller at the lower collision energies. Values of v2v_2, scaled by the initial coordinate space eccentricity, v2/εv_{2}/\varepsilon, as a function of pTp_T are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (sNN\sqrt{s_{NN}} = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV). The v2(pT)v_2(p_T) values for fixed pTp_T rise with increasing collision energy within the pTp_T range studied (<2GeV/c< 2 {\rm GeV}/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v2(pT)v_{2}(p_{T}). We also compare the v2v_2 results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p\textit{p+p} collisions at sNN\sqrt{s_{NN}} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie

    K/pi Fluctuations at Relativistic Energies

    Get PDF
    We report results for K/πK/\pi fluctuations from Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/πK/\pi fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at sNN\sqrt{s_{NN}} = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/πK/\pi fluctuations as well as results for K+/π+K^{+}/\pi^{+}, K/πK^{-}/\pi^{-}, K+/πK^{+}/\pi^{-}, and K/π+K^{-}/\pi^{+} fluctuations. We observe that the K/πK/\pi fluctuations scale with the multiplicity density, dN/dηdN/d\eta, rather than the number of participating nucleons.Comment: 6 pages, 4 figure

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Indications of Conical Emission of Charged Hadrons at the BNL Relativistic Heavy Ion Collider

    Get PDF
    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be 1.37 +- 0.02(stat) +0.06-0.07(syst), independent of pt.Comment: 7 pages, 4 figures, 1 tabl

    Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

    Full text link
    We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.Comment: 19 pages and 5 figures, Accepted for publication in Nuclear Physics

    Observation of Two-source Interference in the Photoproduction Reaction AuAuAuAuρ0Au Au \to Au Au \rho^0

    Get PDF
    In ultra-peripheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a ρ0\rho^0. The ρ0\rho^0 production occurs in two well-separated (median impact parameters of 20 and 40 fermi for the cases considered here) nuclei, so the system forms a 2-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing ρ0\rho^0 production. Since the ρ0\rho^0 decay before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled non-local wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is 87(stat.)±887% \pm 5% {\rm (stat.)}\pm 8% (syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors, of 23% at the 90% confidence level.Comment: Slightly revised version, to appear in PRL. 6 pages with 4 figure
    corecore