50 research outputs found

    Automatically Augmenting Lifelog Events Using Pervasively Generated Content from Millions of People

    Get PDF
    In sensor research we take advantage of additional contextual sensor information to disambiguate potentially erroneous sensor readings or to make better informed decisions on a single sensor’s output. This use of additional information reinforces, validates, semantically enriches, and augments sensed data. Lifelog data is challenging to augment, as it tracks one’s life with many images including the places they go, making it non-trivial to find associated sources of information. We investigate realising the goal of pervasive user-generated content based on sensors, by augmenting passive visual lifelogs with “Web 2.0” content collected by millions of other individuals

    Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity

    Get PDF
    Here, using methylCIBERSORT, the authors characterize the tumour-immune microenvironment of paediatric central nervous system (CNS) tumours and its association with tumour type and prognosis. These findings suggest that immuno-methylomic profiling may inform immunotherapy approaches in paediatric patients with CNS tumour

    Everyday concept detection in visual lifelogs: validation, relationships and trends

    Get PDF
    The Microsoft SenseCam is a small lightweight wearable camera used to passively capture photos and other sensor readings from a user's day-to-day activities. It can capture up to 3,000 images per day, equating to almost 1 million images per year. It is used to aid memory by creating a personal multimedia lifelog, or visual recording of the wearer's life. However the sheer volume of image data captured within a visual lifelog creates a number of challenges, particularly for locating relevant content. Within this work, we explore the applicability of semantic concept detection, a method often used within video retrieval, on the novel domain of visual lifelogs. A concept detector models the correspondence between low-level visual features and high-level semantic concepts (such as indoors, outdoors, people, buildings, etc.) using supervised machine learning. By doing so it determines the probability of a concept's presence. We apply detection of 27 everyday semantic concepts on a lifelog collection composed of 257,518 SenseCam images from 5 users. The results were then evaluated on a subset of 95,907 images, to determine the precision for detection of each semantic concept. We conduct further analysis on the temporal consistency, co-occurance and trends within the detected concepts to more extensively investigate the robustness of the detectors within this novel domain. We additionally present future applications of concept detection within the domain of lifelogging

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

    Get PDF
    Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291

    MiRA - mixed reality agents

    Get PDF
    In recent years, an increasing number of Mixed Reality (MR) applications have been developed using agent technology—both for the underlying software and as an interface metaphor. However, no unifying field or theory currently exists that can act as a common frame of reference for these varied works. As a result, much duplication of research is evidenced in the literature. This paper seeks to fill this important gap by outlining ‘‘for the first time’’ a formal field of research that has hitherto gone unacknowledged, namely the field of Mixed Reality Agents (MiRAs), which are defined as agents embodied in a Mixed Reality environment. Based on this definition, a taxonomy is offered that classifies MiRAs along three axes: agency, based on the weak and strong notions outlined by Wooldridge and Jennings (1995); corporeal presence, which describes the degree of virtual or physical representation (body) of a MiRA; and interactive capacity, which characterises its ability to sense and act on the virtual and physical environment. Furthermore, this paper offers the first comprehensive survey of the state-of-the-art of MiRA research and places each project within the proposed taxonomy. Finally, common trends and future directions for MiRA research are discussed. By defining Mixed Reality Agents as a formal field, establishing a common taxonomy, and retrospectively placing existing MiRA projects within it, future researchers can effectively position their research within this landscape, thereby avoiding duplication and fostering reuse and interoperability.Science Foundation Irelandau,ti,ke,SB-09/09/201
    corecore