353 research outputs found

    Identification of single chain antibodies to breast cancer stem cells using phage display

    Full text link
    Recent evidence suggests that most malignancies are driven by “cancer stem cells” sharing the signature characteristics of adult stem cells: the ability to self renew and to differentiate. Furthermore these cells are thought to be quiescent, infrequently dividing cells with a natural resistance to chemotherapeutic agents. These studies theorize that therapies, which effectively treat the majority of tumor cells but ‘miss’ the stem cell population, will fail, while therapies directed at stern cells can potentially eradicate tumors. In breast cancer, researchers have isolated ‘breast cancer stem cells’ capable of recreating the tumor in vivo and in vitro . Generated new tumors contained both additional numbers of cancer stem cells and diverse mixed populations of cells present in the initial tumor, supporting the intriguing self-renewal and differentiation characteristics. In the present study, an antibody phage library has been used to search for phage displayed-single chain antibodies (scFv) with selective affinity to specific targets on breast cancer stem cells. We demonstrate evidence of two clones binding specifically to a cancer stem cell population isolated from the SUMl59 breast cancer cell line. These clones had selective affinity for cancer stem cells and they were able to select cancer stem cells among a large population of non-stem cancer cells in paraffin-embedded sections. The applicability of these clones to paraffin sections and frozen tissue specimens made them good candidates to be used as diagnostic and prognostic markers in breast cancer patient samples taking into consideration the cancer stern cell concept in tumor biology. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64553/1/285_ftp.pd

    Frequency of cells expressing CD44, a Head and Neck cancer stem cell marker: Correlation with tumor aggressiveness

    Full text link
    Background We previously identified by flow cytometry a Lineage‐CD44+ (Lin‐CD44+) subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma (HNSCC). We now correlate clinical and histologic factors with Lin‐CD44+ cell frequency. Methods The study included 31 patients with HNSCC, of whom 87% had stage IV disease. The frequency of Lin‐CD44+ cells and the success of xenografting patient tumors in mice were correlated with clinical and pathologic data. Results The mean frequency of Lin‐CD44+ cells was 25% (0.4%–81%). It was 36% in patients who had recurrence versus 15% for those without recurrence ( p = .04). Successful xenograft implantation occurred in 53%. Seventy‐five percent of patients with successful xenografts had recurrence versus 21% of patients with unsuccessful xenografts ( p = .003). Conclusions Successful xenograft implantation and a high frequency of Lin‐CD44+ cells correlate with known poor prognostic factors such as advanced T classification and recurrence. These findings may support the stem cell concept in HNSCC. © 2011 Wiley Periodicals, Inc. Head Neck, 2012Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89564/1/21699_ftp.pd

    High-throughput testing in head and neck squamous cell carcinoma identifies agents with preferential activity in human papillomavirus-positive or negative cell lines.

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a common cancer diagnosis worldwide. Despite advances in treatment, HNSCC has very poor survival outcomes, emphasizing an ongoing need for development of improved therapeutic options. The distinct tumor characteristics of human papillomavirus (HPV)-positive vs. HPV-negative disease necessitate development of treatment strategies tailored to tumor HPV-status. High-throughput robotic screening of 1,433 biologically and pharmacologically relevant compounds at a single dose (4 μM) was carried out against 6 HPV-positive and 20 HPV-negative HNSCC cell lines for preliminary identification of therapeutically relevant compounds. Statistical analysis was further carried out to differentiate compounds with preferential activity against cell lines stratified by the HPV-status. These analyses yielded 57 compounds with higher activity in HPV-negative cell lines, and 34 with higher-activity in HPV-positive ones. Multi-point dose-response curves were generated for six of these compounds (Ryuvidine, MK-1775, SNS-032, Flavopiridol, AZD-7762 and ARP-101), confirming Ryuvidine to have preferential potency against HPV-negative cell lines, and MK-1775 to have preferential potency against HPV-positive cell lines. These data comprise a valuable resource for further investigation of compounds with therapeutic potential in the HNSCC

    Molecular Evidence of Lentiviral Vector-Mediated Gene Transfer into Human Self-Renewing, Multi-potent, Long-Term NOD/SCID Repopulating Hematopoietic Cells

    Get PDF
    A major challenge in gene therapy is to achieve efficient transduction of hematopoietic stem cells (HSC). It has previously been shown that lentiviral vectors (LV) transduce efficiently human cord blood-derived NOD/SCID mouse repopulating cells (SRC). Here we studied the effect of cytokines during the short ex vivo incubation with vector. Although SRC transduction was efficient without stimulation, the presence of cytokines significantly improved it. The treatment did not affect the engraftment level or the SRC frequency, but seemed to enhance SRC susceptibility to LV. SRC transduced in both conditions repopulated primary and secondary recipients, maintaining stable multi-lineage transgene expression. Using linear amplification-mediated PCR, we then analyzed vector integration in the bone marrow and CFC of the engrafted mice to monitor the clonal activity of the transduced SRC in vivo. We showed polyclonal engraftment, multi-lineage differentiation, and propagation to secondary recipients of individual SRC. We observed multiple integrations in most clones. These results provide the first formal demonstration that primitive human HSC with self-renewal and multi-lineage repopulation capacities were transduced by LV. Our findings are relevant for the design of clinical protocols that exploit this system to reach significant engraftment by genetically modified HSC in the absence of in vivo selection or strong conditioning regimens

    Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1

    Get PDF
    Background: AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. Methods and Findings: The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. Conclusions: These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting. © 2007 Tsuzuki et al

    TAM family receptors in conjunction with MAPK signalling are involved in acquired resistance to PI3Kα inhibition in head and neck squamous cell carcinoma.

    Get PDF
    BACKGROUND: Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway is common in many malignancies, including head and neck squamous cell carcinoma (HNSCC). Despite pre-clinical and clinical studies, outcomes from targeting the PI3K pathway have been underwhelming and the development of drug resistance poses a significant barrier to patient treatment. In the present study, we examined mechanisms of acquired resistance to the PI3Kα inhibitor alpelisib (formerly BYL719) in HNSCC cell lines and patient-derived xenografts (PDXs). METHODS: Five unique PDX mouse models and three HNSCC cell lines were used. All cell lines and xenografts underwent genomic characterization prior to study. Serial drug treatment was conducted in vitro and in vivo to develop multiple, clinically-significant models of resistance to alpelisib. We then used reverse phase protein arrays (RPPAs) to profile the expression of proteins in parental and drug-resistant models. Top hits were validated by immunoblotting and immunohistochemistry. Flow cytometric analysis and RNA interference studies were then used to interrogate the molecular mechanisms underlying acquired drug resistance. RESULTS: Prolonged treatment with alpelisib led to upregulation of TAM family receptor tyrosine kinases TYRO3 and AXL. Importantly, a significant shift in expression of both TYRO3 and AXL to the cell surface was detected in drug-resistant cells. Targeted knockdown of TYRO3 and AXL effectively re-sensitized resistant cells to PI3Kα inhibition. In vivo, resistance to alpelisib emerged following 20-35 days of treatment in all five PDX models. Elevated TYRO3 expression was detected in drug-resistant PDX tissues. Downstream of TYRO3 and AXL, we identified activation of intracellular MAPK signalling. Inhibition of MAPK signalling also re-sensitized drug-resistant cells to alpelisib. CONCLUSIONS: We have identified TYRO3 and AXL receptors to be key mediators of resistance to alpelisib, both in vitro and in vivo. Our findings suggest that pan-TAM inhibition is a promising avenue for combinatorial or second-line therapy alongside PI3Kα inhibition. These findings advance our understanding of the role TAM receptors play in modulating the response of HNSCC to PI3Kα inhibition and suggest a means to prevent, or at least delay, resistance to PI3Kα inhibition in order to improve outcomes for HNSCC patients

    An Immune Atlas of Clear Cell Renal Cell Carcinoma

    Get PDF
    Immune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.ISSN:0092-8674ISSN:1097-417

    Embodied techno-space: An auto-ethnography on affective citizenship in the techno electronic dance music scene

    Get PDF
    This study examines auto-ethnographical experience with bodily participation in spaces of techno electronic dance music (EDM). The article engages with how inner- and inter-corporeal lived experience in techno-space constructs affective citizenship on the very personal level of the participant-researcher. In this context, the article attends to the underexplored field of how affective citizenship is attained and valued along embodied knowledge of subcultural capital in the EDM scene. It particularly addresses its overlooked gendered/sexual and technologically mediated (e)motional body. Drawing on a feminist scholar-artist method, the article renders embodied encounters with techno-space through evocative vignettes that include affective writing, a drawing and introspective poetic revelation. This method aims to convey embodied knowledge of techno-space as creative transformative experience beyond conventional modes of retrospective narration. The article concludes with two key lived experiences of affective citizenship: first, at times the gendered/sexual and cyborgian body was mobilised into a state of emotionally shared publicness that co-produced techno-space. Second, (inter)actions in techno-space incited subcultural capital as a set of tacit knowledge assets (including affective, empathic and therapeutic qualities) to be accumulated over techno events and to be occasionally transferred to inclusive participation in the everyday life

    Tissue-specific regulatory network extractor (TS-REX): a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks

    Get PDF
    The prediction of transcription factor binding sites in genomic sequences is in principle very useful to identify upstream regulatory factors. However, when applying this concept to genomes of multicellular organisms such as mammals, one has to deal with a large number of false positive predictions since many transcription factor genes are only expressed in specific tissues or cell types. We developed TS-REX, a database/software system that supports the analysis of tissue and cell type-specific transcription factor-gene networks based on expressed sequence tag abundance of transcription factor-encoding genes in UniGene EST libraries. The use of expression levels of transcription factor-encoding genes according to hierarchical anatomical classifications covering different tissues and cell types makes it possible to filter out irrelevant binding site predictions and to identify candidates of potential functional importance for further experimental testing. TS-REX covers ESTs from H. sapiens and M. musculus, and allows the characterization of both presence and specificity of transcription factors in user-specified tissues or cell types. The software allows users to interactively visualize transcription factor-gene networks, as well as to export data for further processing. TS-REX was applied to predict regulators of Polycomb group genes in six human tumor tissues and in human embryonic stem cells
    corecore