66 research outputs found

    Scavenger receptors in host defense: from functional aspects to mode of action

    Get PDF
    Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin- Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type

    MoO3 altered ZnO: A suitable choice for the photocatalytic removal of chloro-acetic acids in natural sunlight exposure

    Get PDF
    The MoO3 coated ZnO photocatalysts were synthesized for the optimum harvesting of the absorbed ultraviolet sunlight photons by initially permeating Mo6+ ions at the surface of pre-synthesized ZnO and finally transformed to MoO3 by thermal treatment in the air. The absorption spectra of the synthesized powders revealed the extension of the absorption edge in the visible region whereas, the photoluminescence spectroscopy established the supporting role of the MoO3 coating in gradually plummeting the excitons recombination. The growth of additional peaks in Raman as well as X-ray photoelectron spectra and the appearance of the corresponding low-intensity reflection substantiated the surface prevalence of MoO3. The absence of the individual particles of MoO3 in FESEM and the verification of coated layer by HRTEM images validated the authenticity of the adopted synthetic route. The electrochemical evaluation of the synthesized powders under illumination revealed the complete elimination of photocorrosion and the synergic role of the MoO3 layer for improved trap and transfer of charge carriers. The evaluation of the flat-band potentials of the coated powders by Mott-Schottky analysis revealed the suitability of the conduction band edges for the generation of superoxide anion radicals. The photocatalytic activity of the synthesized powders was assessed for the removal of chloro derivatives (mono-, di-, trichloroacetic acids) in comparison to pure acetic acid. A significant effect of the stability, polarity and stereochemical structure of the substrate on the photocatalytic removal process was observed and discussed. The experimental evidences from the time-scale chemical analysis were interpreted for the identification of the reactive oxygen species (ROS) involved in the degradation/mineralization process. The validation of the Langmuir-Hinshelwood kinetic model was also examined. Efforts were made to estimate the plausible route of the degradation/mineralization process

    Neurotoxicity of aluminium chloride and okadaic acid in zebrafish: Insights into Alzheimer's disease models through anxiety and locomotion testing, and acute toxicity assessment with Litsea garciae bark's methanolic extract

    Get PDF
    Alzheimer's disease (AD) is a complicated neurodegenerative disorder that presents significant challenges for the development of effective therapeutic interventions. Understanding disease mechanisms and exploring potential treatments require the use of animal models that accurately replicate the pathology of AD. In this study, we investigated the potential of two neurotoxin inducers, aluminium chloride (AlCl3) and okadaic acid (OKA), to validate the zebrafish as a model organism for AD. AD can impact locomotor activity and induce anxiety-like behaviors. To assess these behaviors, a 6-minute novel tank test was conducted. Zebrafish were administered with low, medium, or high doses of neurotoxic agent (AlCl3 or OKA) intraperitoneally twice weekly for 21 days. Behavioral activities were recorded at three time points: day 7 (short duration), day 14 (moderate duration), and day 21 (extended duration). The behavioral task required the evaluation of four endpoints. Methanolic extract of Litsea garciae bark was selected as a potential plant for the treatment of AD in this study, based on its previously demonstrated antioxidant effect. However, the acute toxicity of this plant has not been previously assessed. Therefore, this research was aimed to investigate the acute toxicity of the L. garciae bark’s methanolic extract in adult zebrafish. The extract was immersed in a static system following OECD Test Guideline No. 203, and the acute toxicity test involved monitoring the adult zebrafish for 96 h for any deaths or apparent abnormalities. Regarding the behavioural task, the groups induced with 100 nM of OKA demonstrated significant differences in all measured parameters compared to the control group at the 21-day time point. In contrast, none of the parameters were significantly different between the AlCl3-induced groups and the control group at any of the three time points (7, 14, or 21 days). Regarding acute toxicity, neither the test group (100 mg/L) nor the control group recorded any deaths or abnormalities. Therefore, no LC50 value could be determined. These findings confirm the acceptance of OKA as an inducer in the zebrafish model of AD and highlight the significance of the safe and non-toxic nature of L. garciae bark's methanolic extract for future ethnopharmacological investigations

    Neurotoxicity of aluminium chloride and okadaic acid in zebrafish: insights into alzheimer's disease models through anxiety and locomotion testing, and acute toxicity assessment with Litsea garciae bark's methanolic extract

    Get PDF
    Alzheimer's disease (AD) is a complicated neurodegenerative disorder that presents significant challenges for the development of effective therapeutic interventions. Understanding disease mechanisms and exploring potential treatments require the use of animal models that accurately replicate the pathology of AD. In this study, we investigated the potential of two neurotoxin inducers, aluminium chloride (AlCl3) and okadaic acid (OKA), to validate the zebrafish as a model organism for AD. AD can impact locomotor activity and induce anxiety-like behaviors. To assess these behaviors, a 6-minute novel tank test was conducted. Zebrafish were administered with low, medium, or high doses of neurotoxic agent (AlCl3 or OKA) intraperitoneally twice weekly for 21 days. Behavioral activities were recorded at three time points: day 7 (short duration), day 14 (moderate duration), and day 21 (extended duration). The behavioral task required the evaluation of four endpoints. Methanolic extract of Litsea garciae bark was selected as a potential plant for the treatment of AD in this study, based on its previously demonstrated antioxidant effect. However, the acute toxicity of this plant has not been previously assessed. Therefore, this research was aimed to investigate the acute toxicity of the L. garciae bark’s methanolic extract in adult zebrafish. The extract was immersed in a static system following OECD Test Guideline No. 203, and the acute toxicity test involved monitoring the adult zebrafish for 96 h for any deaths or apparent abnormalities. Regarding the behavioural task, the groups induced with 100 nM of OKA demonstrated significant differences in all measured parameters compared to the control group at the 21-day time point. In contrast, none of the parameters were significantly different between the AlCl3-induced groups and the control group at any of the three time points (7, 14, or 21 days). Regarding acute toxicity, neither the test group (100 mg/L) nor the control group recorded any deaths or abnormalities. Therefore, no LC50 value could be determined. These findings confirm the acceptance of OKA as an inducer in the zebrafish model of AD and highlight the significance of the safe and non-toxic nature of L. garciae bark's methanolic extract for future ethnopharmacological investigations

    Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat

    Get PDF
    To accelerate genetic gains in breeding, physiological trait (PT) characterization of candidate parents can help make more strategic crosses, increasing the probability of accumulating favorable alleles compared to crossing relatively uncharacterized lines. In this study, crosses were designed to complement “source” with “sink” traits, where at least one parent was selected for favorable expression of biomass and/or radiation use efficiency—source—and the other for sink-related traits like harvest-index, kernel weight and grains per spike. Female parents were selected from among genetic resources—including landraces and products of wide-crossing (i.e. synthetic wheat)—that had been evaluated in Mexico at high yield potential or under heat stress, while elite lines were used as males. Progeny of crosses were advanced to the F4 generation within Mexico, and F4-derived F5 and F6 generations were yield tested to populate four international nurseries, targeted to high yield environments (2nd and 3rd WYCYT) for yield potential, and heat stressed environments (2nd and 4th SATYN) for climate resilience, respectively. Each nursery was grown as multi-location yield trials. Genetic gains were achieved in both temperate and hot environments, with most new PT-derived lines expressing superior yield and biomass compared to local checks at almost all international sites. Furthermore, the tendency across all four nurseries indicated either the superiority of the best new PT lines compared with the CIMMYT elite checks, or the superiority of all new PT lines as a group compared with all checks, and in some cases, both. Results support—in a realistic breeding context—the hypothesis that yield and radiation use efficiency can be increased by improving source:sink balance, and validate the feasibility of incorporating exotic germplasm into mainstream breeding efforts to accelerate genetic gains for yield potential and climate resilience

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial

    Get PDF
    Background Results of small trials indicate that fluoxetine might improve functional outcomes after stroke. The FOCUS trial aimed to provide a precise estimate of these effects. Methods FOCUS was a pragmatic, multicentre, parallel group, double-blind, randomised, placebo-controlled trial done at 103 hospitals in the UK. Patients were eligible if they were aged 18 years or older, had a clinical stroke diagnosis, were enrolled and randomly assigned between 2 days and 15 days after onset, and had focal neurological deficits. Patients were randomly allocated fluoxetine 20 mg or matching placebo orally once daily for 6 months via a web-based system by use of a minimisation algorithm. The primary outcome was functional status, measured with the modified Rankin Scale (mRS), at 6 months. Patients, carers, health-care staff, and the trial team were masked to treatment allocation. Functional status was assessed at 6 months and 12 months after randomisation. Patients were analysed according to their treatment allocation. This trial is registered with the ISRCTN registry, number ISRCTN83290762. Findings Between Sept 10, 2012, and March 31, 2017, 3127 patients were recruited. 1564 patients were allocated fluoxetine and 1563 allocated placebo. mRS data at 6 months were available for 1553 (99·3%) patients in each treatment group. The distribution across mRS categories at 6 months was similar in the fluoxetine and placebo groups (common odds ratio adjusted for minimisation variables 0·951 [95% CI 0·839–1·079]; p=0·439). Patients allocated fluoxetine were less likely than those allocated placebo to develop new depression by 6 months (210 [13·43%] patients vs 269 [17·21%]; difference 3·78% [95% CI 1·26–6·30]; p=0·0033), but they had more bone fractures (45 [2·88%] vs 23 [1·47%]; difference 1·41% [95% CI 0·38–2·43]; p=0·0070). There were no significant differences in any other event at 6 or 12 months. Interpretation Fluoxetine 20 mg given daily for 6 months after acute stroke does not seem to improve functional outcomes. Although the treatment reduced the occurrence of depression, it increased the frequency of bone fractures. These results do not support the routine use of fluoxetine either for the prevention of post-stroke depression or to promote recovery of function. Funding UK Stroke Association and NIHR Health Technology Assessment Programme

    Recent advances of the signal processing techniques in future smart grids

    No full text
    Smart grid is an emerging research field of the current decade. The distinguished features of the smart grid are monitoring capability with data integration, advanced analysis to support system control, enhanced power security and effective communication to meet the power demand. Efficient energy consumption and minimum costs are also included in the prodigious features of smart grid. The smart grid implementation requires intelligent interaction between the power generating and consuming devices that can be achieved by installing devices capable of processing data and communicating it to various parts of the grid. The efficiency of these devices is greatly dependent on the selection and implementation of the advance digital signal processing techniques. This paper provides a comprehensive survey on the applications of signal processing techniques in smart grids, plus the challenges and shortcomings of these techniques. Furthermore, this paper also outlines some future research directions related to applications of signal processing in smart grids
    corecore