555 research outputs found

    How and Why Does a Fly Turn Its Immune System Off?

    Get PDF
    The fly immune response is actively turned down, and if it is not, pathology results

    Integration of linear and dendritic actin nucleation in Nck-induced actin comets

    Get PDF
    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails-dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, form-in-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.Fil: Surtayeva, Sofya. University of Connecticut School of Medicine; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Velle, Katrina B.. University of Connecticut; Estados UnidosFil: Campellone, Kenneth G.. University of Connecticut; Estados UnidosFil: Talman, Arthur. Yale School of Medicine; Estados UnidosFil: Alvarez, Diego Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Agaisse, Hervé. Yale School of Medicine; Estados UnidosFil: Wu, Yi I.. University of Connecticut School of Medicine; Estados UnidosFil: Loew, Leslie M.. University of Connecticut School of Medicine; Estados UnidosFil: Mayer, Bruce J.. University of Connecticut School of Medicine; Estados Unido

    The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility

    Get PDF
    Vaccinia virus dissemination relies on the N-WASP– ARP2/3 pathway, which mediates actin tail formation underneath cell-associated extracellular viruses (CEVs). Here, we uncover a previously unappreciated role for the formin FHOD1 and the small GTPase Rac1 in vaccinia actin tail formation. FHOD1 depletion decreased the number of CEVs forming actin tails and impaired the elongation rate of the formed actin tails. Recruitment of FHOD1 to actin tails relied on its GTPase binding domain in addition to its FH2 domain. In agreement with previous studies showing that FHOD1 is activated by the small GTPase Rac1, Rac1 was enriched and activated at the membrane surrounding actin tails. Rac1 depletion or expression of dominant-negative Rac1 phenocopied the effects of FHOD1 depletion and impaired the recruitment of FHOD1 to actin tails. FHOD1 overexpression rescued the actin tail formation defects observed in cells overexpressing dominant-negative Rac1. Altogether, our results indicate that, to display robust actin-based motility, vaccinia virus integrates the activity of the N-WASP– ARP2/3 and Rac1–FHOD1 pathways.Fil: Alvarez, Diego Ezequiel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. University of Yale. School of Medicine; Estados UnidosFil: Agaisse, Herve. University of Yale. School of Medicine; Estados Unido

    Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides

    Get PDF
    The transcriptional regulator PlcR and its cognate cell–cell signalling peptide PapR form a quorum-sensing system that controls the expression of extra-cellular virulence factors in various species of the Bacillus cereus group. PlcR and PapR alleles are clustered into four groups defining four pherotypes. However, the molecular basis for group specificity remains elusive, largely because the biologically relevant PapR form is not known. Here, we show that the in vivo active form of PapR is the C-terminal heptapeptide of the precursor, and not the pentapeptide, as previously suggested. Combining genetic complementation, anisotropy assays and structural analysis we provide a detailed functional and structural explanation for the group specificity of the PlcR–PapR quorum-sensing system. We further show that the C-terminal helix of the PlcR regulatory domain, specifically the 278 residue, in conjunction with the N-terminal residues of the PapR heptapeptide determines this system specificity. Variability in the specificity-encoding regions of plcR and papR genes suggests that selection and evolution of quorum-sensing systems play a major role in adaptation and ecology of Bacilli

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other

    The PlcR Virulence Regulon of Bacillus cereus

    Get PDF
    PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the reference strain and its isogenic Δ-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection (bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient adaptation of B. cereus to its host environment

    Characterization of Small Molecule Scaffolds that Bind to the Shigella Type III Secretion System Protein IpaD

    Get PDF
    This is the peer reviewed version of the following article: ChemMedChem. 2017 Sep 21; 12(18): 1534–1541., which has been published in final form at http://doi.org/10.1002/cmdc.201700348. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salts sterols. Here, we identified four new small molecule scaffolds that bind to IpaD based on the methylquinoline, pyrrolidin-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small molecule inhibitors of IpaD that could lead to new anti-infectives

    Crystal Structure of Diedel, a Marker of the Immune Response of Drosophila melanogaster

    Get PDF
    Background: The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues with 10 cysteines. Methodology/Principal Findings: We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its own signal peptide and solved its crystal structure at 1.15 A ˚ resolution by SIRAS using an iodo derivative. Diedel is composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel b-sheet covered by an a-helix and displays a ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae and Ascoviridae families. Conclusion/Significance: Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small famil

    Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster

    Get PDF
    Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity

    The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Mycobacterium tuberculosis </it>and in <it>Mycobacterium smegmatis </it>the <it>furA</it>-<it>katG </it>loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In <it>M. tuberculosis furA-katG </it>constitute a single operon, whereas in <it>M. smegmatis </it>a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the <it>furA </it>gene, corresponds to transcription initiation from the <it>furA </it>promoter; the second one is the <it>katG </it>mRNA 5' end, located in the terminal part of <it>furA</it>.</p> <p>Results</p> <p>In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the <it>M. smegmatis </it>region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of <it>M. tuberculosis </it>and <it>M. smegmatis </it>were inserted in a plasmid between the <it>sigA </it>promoter and the <it>lacZ </it>reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the <it>katG </it>translation start codon, increased beta-galactosidase activity and stabilized the <it>lacZ </it>transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of <it>M. smegmatis </it>was followed by an increasing number of <it>katG </it>codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the <it>katG </it>transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing.</p> <p>Conclusion</p> <p>This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The <it>furA-katG </it>mRNA is transcribed from the <it>furA </it>promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA.</p
    • 

    corecore