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Abstract Damage-associated molecular patterns (DAMPs) are molecules released by dead cells

that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected

in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is

phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-

presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in

invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila

melanogaster triggers a response characterised by selective induction of STAT target genes in the

fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this

response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila

Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-

family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the

evolution of adaptive immunity.

DOI: 10.7554/eLife.19662.001

Introduction
Trauma, burns, ischemia, strenuous exercise, all induce a sterile inflammatory response. It is likely

that this response evolved to clear cell debris, promote tissue repair and maintain tissue sterility

(Zelenay and Reis e Sousa, 2013; Eming et al., 2014) but, if uncontrolled, it can lead to (aseptic)

shock and, in some cases, death (Rock et al., 2010). The prevailing notion is that sterile inflamma-

tion is initiated by pro-inflammatory signals that are released by damaged cells. These include intra-

cellular components that are exposed when cells lose their membrane integrity, such as ATP, uric
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acid, RNA and DNA, collectively known as damage-associated molecular patterns (DAMPs)

(Rock et al., 2010; Zelenay and Reis e Sousa, 2013). The universe of DAMPs and their receptors,

as well as the mechanisms regulating DAMP responses, remains underexplored. This is partly

because early research in this area was tainted by issues of microbial contamination (Beg, 2002) and

because immunologists have often focussed on sterile inflammation from the narrow perspective of

adaptive immunity (Matzinger, 1994; Land et al., 1994). However, it is probable that responses to

DAMPs, like responses to microbes, pre-date the vertebrate evolution of T and B cells and have an

early metazoan origin, much like the clearance of dead cells (Krysko et al., 2011; Hochreiter-

Hufford and Ravichandran, 2013; Eming et al., 2014). Therefore, the study of invertebrate

responses to DAMPs could offer a different perspective into the induction of sterile inflammation,

akin to how research into insect immunity to infection led to the identification of Toll signalling and

paved the way to the discovery of an analogous pathway in vertebrates (Lemaitre et al., 1996).

The immune system of Drosophila melanogaster has been widely studied in the context of infec-

tion. It consists of a cellular and a humoural arm, in addition to cell-intrinsic antiviral RNAi responses

(Buchon et al., 2014; Lemaitre and Hoffmann, 2007). The cellular arm is made up of three macro-

phage-like types of cells, collectively termed haemocytes (Buchon et al., 2014; Lemaitre and Hoff-

mann, 2007). The humoural immune response relies on antimicrobial peptides (AMPs) that are

synthesised in the fat body (the fly equivalent of the liver) and then secreted into the haemolymph to

provide systemic protection from bacteria and fungi (Lemaitre and Hoffmann, 2007; Buchon et al.,

2014). The production of AMPs is regulated by two different pathways. The Toll pathway is acti-

vated by peptidoglycan fragments of Gram-positive bacteria, fungal b-glucans, and pathogen-

derived protease activity in the haemolymph (Buchon et al., 2014; Lemaitre and Hoffmann, 2007).

The Imd pathway is activated by peptidoglycan fragments from Gram-negative bacteria

(Buchon et al., 2014; Lemaitre and Hoffmann 2007). Activation of either pathway results in the

translocation of distinct NF-kB family transcription factors into the nucleus and the subsequent syn-

thesis of AMPs best suited to neutralise the type of microorganism detected (Lemaitre and Hoff-

mann, 2007; Buchon et al., 2014). A third pathway contributing to Drosophila humoural immunity

involves Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signalling. In con-

trast to the Toll and Imd pathway, the JAK/STAT pathway has not yet been shown to be directly

induced by sensors of invading microorganisms (Myllymäki and Rämet, 2014). However, it has

been implicated in resistance to as well as tolerance to viral infections (Dostert et al., 2005;

eLife digest All animals must be able to detect and repair injuries quickly. To do this, the body

triggers a process called inflammation at the site of injury to remove dead and damaged cells, keep

the area free from infection and trigger repair. However, if an area becomes excessively inflamed, or

remains inflamed for a long period of time, it can contribute to diseases like cancer and Alzheimer’s

disease.

Inflammation starts when the body detects molecules that are released when cells die or are

damaged to the extent that they become leaky. Actin, which is a protein that usually provides

structural support to the cell, is one molecule that is sensed by the immune system in mammals

when released from dying cells. However, it is not clear whether released actin can also trigger

reactions in simpler animals like fruit flies.

To address this question, Srinivasan, Gordon et al. injected fruit flies with actin. These animals

developed a widespread reaction reminiscent of inflammation seen in mammals. Further

experiments showed that actin switches on a signalling pathway called JAK/STAT, which is known to

become active when flies experience other types of stress. The JAK/STAT proteins activate a

signalling pathway that leads to changes in gene activity. Srinivasan, Gordon et al. also showed that

part of a cascade of signals triggered by released actin in mammals is shared in fruit flies.

These findings suggest that this important response to actin evolved a long time ago. A future

challenge is to find out how the body detects and mops up released actin, which may help us to

understand how actin can contribute to various inflammatory diseases.

DOI: 10.7554/eLife.19662.002
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Lamiable et al., 2016). Notably, the JAK/STAT pathway is activated by different types of stresses

(e.g. heat, mechanical pressure, oxidative stress or UV irradiation) (Lemaitre et al., 1996;

Ekengren et al., 2001; Ekengren and Hultmark, 2001). All of these insults likely result in cell death

suggesting the possibility that JAK/STAT pathway activation might be triggered by DAMPs rather

than microbes.

The JAK/STAT pathway is elicited by cytokines of the Unpaired (Upd) family – Upd1

(Harrison et al., 1998), Upd2 (Gilbert et al., 2005; Hombrı́a et al., 2005) and Upd3 (Agaisse et al.,

2003; Wright et al., 2011) – all of which serve as ligands for the only JAK/STAT-coupled receptor in

Drosophila, Domeless (dome) (Brown et al., 2001). The binding of Upds induces Domeless dimer-

ization and activation of a single JAK (termed Hopscotch). Activated Hopscotch proteins phosphory-

late one another allowing for recruitment of the single Drosophila STAT family transcription factor,

STAT92E. The latter is then phosphorylated by Hopscotch, resulting in dimerisation and transloca-

tion into the nucleus. STAT92E dimers bind to the promoters of their target genes (Kiu and Nichol-

son, 2012; Bina et al., 2010; Müller et al., 2005) including, amongst others, ones encoding

proteins involved in viral resistance (Lamiable et al., 2016; Dostert et al., 2005), as well as proteins

of the Turandot family such as Turandot M (TotM). The exact function of Turandot family proteins is

not known but they have been controversially argued to be linked to stress resistance

(Ekengren and Hultmark, 2001; Ekengren et al., 2001; Mahapatra and Rand, 2012; Zhong et al.,

2013). Besides a role in host defence, the JAK/STAT pathway has also been linked to energy metab-

olism (Rajan and Perrimon, 2012) and regenerative processes, for example in the gut (Jiang et al.,

2009). The involvement of JAK/STAT signalling in regeneration is particularly interesting given the

role of DAMPs in contributing to tissue repair (Vénéreau et al., 2015).

We have previously identified DNGR-1 (also known as CLEC9A) as a vertebrate-restricted innate

immune receptor dedicated to DAMP recognition (Sancho et al., 2009). DNGR-1 is phosphorylated

by Src family kinases and then signals via Syk although it does not induce inflammation. Rather,

DNGR-1 is expressed by dendritic cells (DCs) and signals to favour cross-presentation of antigens

from dead cells, contributing to CD8+ T cell responses to cytopathic infections and, possibly,

tumours (Iborra et al., 2012; Zelenay et al., 2012; Sancho et al., 2009). We and others subse-

quently found that the DAMP recognised by DNGR-1 is F-actin, the polymer of G-actin that provides

higher eukaryotic cells with structural integrity (Ahrens et al., 2012; Zhang et al., 2012). Actin is an

ideal DAMP given that it is extremely conserved (90% identity between yeast and humans) and

highly abundant and ubiquitous within all eukaryotic cells but absent from extracellular fluids. We

therefore hypothesised that released actin constitutes an evolutionarily-conserved DAMP whose

detection might involve a signalling pathway conserved from flies to mammals. This would be analo-

gous to the conservation of the Toll signalling pathway (albeit not the upstream receptors) in the

Drosophila and vertebrate response to fungi and bacteria. Here, we show systemic administration of

actin to Drosophila selectively triggers a JAK/STAT response and that this requires the fly homo-

logues of Src and Syk. Our data therefore reveal an evolutionarily-conserved tryosine kinase-based

pathway for recognising damage through sensing of released or exposed actin.

Results

Injection of actin induces STAT target genes in Drosophila
To test whether actin might act as a DAMP in Drosophila, we injected w1118 adult flies with actin or

with buffer alone and carried out RNAseq gene expression profiling of total fly extracts (Figure 1a).

Actin injection led to the differential expression of a large number of genes as compared to injection

of buffer control: 241 genes were induced or repressed at 3 hr, 1297 genes at 6 hr and 351 genes at

24 hr post-injection (Figure 1b). Notably, among genes that were induced selectively in actin treated

flies, we found the members of the Tot gene family including TotM, TotA and TotC, as well as

Socs36E, Diedel and thioester-containing protein (Tep)1 (Figure 1b, c), all of which are STAT-depen-

dent (Boutros et al., 2002; Müller et al., 2005; Lagueux et al., 2000). Gene set enrichment analysis

(GSEA) of published datasets confirmed that target genes of STAT92E were highly enriched in actin-

compared to buffer-injected flies (Figure 1d) (p<0.0001). The presence of STAT binding sites in pro-

moters of genes upregulated by actin but not buffer injection was validated by bioinformatics
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Figure 1. Global gene expression profiling reveals strong enrichment for JAK/STAT regulated genes upon actin injection. (a) Groups of control (w1118)

flies were injected with either buffer or actin before euthanasia at 3, 6 or 24 hr post injection. Flies within each group were pooled, RNA was isolated

and processed for RNAseq analysis as described in the Methods. (b) Genes differentially expressed between buffer and actin-injected flies, including

both up and down regulated transcripts, are represented for each time point in a Venn diagram. Only genes differentially expressed with a false

discovery rate (FDR) < 0.05 were included in the analysis. The numbers within each set represent the numbers of genes differentially expressed. Select

STAT target genes are indicated. (c) Differentially expressed genes between actin- and buffer-injected flies at 3, 6 and 24 hr were used to draw a

hierarchical heat map. Genes were clustered using a Euclidean distance matrix and average linkage clustering. Samples were ordered based on time

and treatment. The heat map shows the average expression values from triplicate samples. Red indicates higher expression and blue indicates lower

expression relative to the mean expression of probes across all samples. The black box highlights genes for which there was the biggest fold change

increase in actin- relative to buffer-injected flies. (d) Enrichment plot from GSEA showing that targets of STAT92E are enriched within the upregulated

gene set in actin-injected files relative to buffer injected flies after 24 hr.

DOI: 10.7554/eLife.19662.003
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analyses (STAT responsive elements: p=7.8�10–4 using Transfac database, p=1.63�10–8 using JAS-

PAR database).

We confirmed by RT-qPCR that actin but not buffer injection potently triggers expression of Tot,

Tep and Diedel genes peaking at 24 hr after injection (Figure 2a-f and data not shown). Actin injec-

tion did not lead to the expression of the AMP genes Drs and Dpt, which were induced only upon

experimental fungal or bacterial infection (Figure 2g, h). This indicates the absence of microbial con-

taminants in actin preparations and demonstrates that the response to actin differs from that to sep-

tic injury, in which induction of STAT targets is invariably accompanied by that of genes downstream

of Toll or Imd (Agaisse et al., 2003; Chakrabarti et al., 2016; Brun et al., 2006). In this regard,

TotM induction by actin was much greater than that elicited by injury (clean or septic) or by heat

shock, which are classically regarded as inducers of the JAK-STAT signalling pathway (Agaisse et al.,

2003; Chakrabarti et al., 2016) (Figure 2—figure supplement 1a and data not shown).

The uniqueness of the response to actin was further patent in the fact that injection of a plethora

of sugars, salts, lipids, polysaccharides, proteins, peptides, or amino acids did not induce TotM (Fig-

ure 2—figure supplement 2a–c). Similarly, injection of ATP, DNA, uric acid (monosodium urate –

MSU) or heat shock proteins (HSPs) – all of which act as DAMPs in mammals – failed to elicit TotM in

flies (Figure 2—figure supplement 2d). The finding that TotM is not induced by any of the above

stimuli other than actin needs to be tempered by the fact that they were all tested at a single, some-

what arbitrary, dose but it also acts as a control for the effects of injection-mediated injury. Impor-

tantly, the globular tertiary structure of actin was required for the response as injection of denatured

protein failed to elicit TotM (Figure 2—figure supplement 2e). Finally, actin injection induced equiv-

alent TotM levels in germ-free and SPF (specific pathogen free) flies, showing that microbiota or

their products do not contribute to the response, despite the fact that they are inevitably introduced

into the thorax of SPF flies upon piercing of the cuticle during injection (Figure 2i). Similarly, the

response to actin did not require Wolbachia, a genus of vertically-transmitted intracellular bacteria

that infect many arthropods and is known to impact immune responses (Teixeira et al., 2008;

Hedges et al., 2008). Altogether, these data indicate that the introduction of actin into the haemo-

lymph of flies uniquely induces a sterile inflammatory response characterised by selective induction

of STAT target genes.

To ensure an experimental window for mechanistic dissection of the response (see below), most

of the above experiments employed injection of 36.8 ng of actin, which is roughly equivalent to the

amount contained in 3000 HeLa cells (data not shown). However, TotM induction could be observed

upon injection of as little as 0.1 ng actin, which corresponds to the contents of 8–10 cells, thereby

underscoring physiological relevance (Figure 2j). Actin from all tested species (human, rabbit and

Drosophila) induced TotM (see Materials and Methods), consistent with the extreme evolutionary

conservation of the protein. Importantly, TotM induction was not due to the cytopathic effects of

actin filaments in vivo as the response was triggered equally by phalloidin-stabilised filamentous (F)-

or latrunculin-stabilised globular (G)-actin (Figure 2k). The ability of G-actin to stimulate the

response in vivo in the absence of polymerisation could be formally demonstrated by injecting a

Drosophila non-polymerisable G-actin mutant. The monomeric nature of the G-actin mutant used

was first verified by probing with mDNGR-1 extracellular domain, which specifically binds F- but not

G-actin (Figure 2—figure supplement 1b) (Ahrens et al., 2012; Hanč et al., 2015). Injection of the

G-actin mutant induced a response equivalent to that triggered by an injection of polymeric F-actin

(Figure 2l).

Extracellular actin-induced STAT activation occurs in the fat body
To further analyse the response, we focused on the tissues where STAT activation might occur. Anal-

ysis of physically-dissected body parts of w1118 flies injected with actin revealed that STAT target

gene expression was enriched in regions containing the fat body (Figure 3a). We confirmed that

STAT activation takes place in the fat body by using reporter flies in which GFP is expressed under

the control of a STAT response element and in which, additionally, fat body cells are labelled with

Tomato fluorescent protein for ease of organ identification (Stat92-dGFP+LPP-Gal4>UAS-Myr-td-

Tom). Injection of actin, but not mock injection (0 hr) or injection of buffer alone, resulted in a time-

dependent increase in GFP fluorescence exclusively in Tomato+ fat body cells (Figure 3b, c). We

next used a genetic approach to understand how extracellular actin leads to STAT activity in the fat

body and to assess the contribution of that organ to the global response measured in total fly
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Figure 2 continued on next page
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extracts. First, we validated the requirement for the JAK/STAT pathway by expressing a dominant

negative Domeless receptor (dome DCyt2.3). Overexpression of dome DCyt2.3 in the whole fly using

a ubiquitous Actin-Gal4 driver resulted in significant attenuation of TotM expression in response to

actin injection (Figure 4a). The same result was obtained when overexpressing dome DCyt2.3 specif-

ically in the fat body using a fat body-restricted, temperature-sensitive c564-Gal80ts driver (c564-

Gal4; Tub-Gal80ts) (Figure 4a). Concordant with those results, the response was also attenuated in

extracts of flies in which STAT signalling was reduced by overexpressing the STAT inhibitor, dPIAS,

in the fat body using two different fat body-specific drivers under the control or not of a Gal80ts

temperature-sensitive repressor (Figure 4b, c). Finally, RNAi-mediated knockdown of STAT92E spe-

cifically in fat body cells was sufficient to suppress TotM induction by injected actin (Figure 4d).

These results suggest that canonical STAT-dependent TotM induction in the fat body accounts for

the global response seen in total fly extracts.

Although we focused on TotM, we also assessed whether some of the other most highly upregu-

lated genes in actin-injected flies were similarly STAT-dependent. However, ablation of STAT92E in

the fat body did not alter the inducibility of those we tested (Figure 4—figure supplement 1a). In

contrast, actin-induced downregulation of some tested transcripts was prevented by reduction of

STAT92E in the fat body (Figure 4—figure supplement 1b). These data, together with the GSEA

analysis, underscore the notion that STAT activation is a major outcome of actin injection but sug-

gest that extracellular actin likely triggers additional signalling pathways, which may or not involve

the fat body and impact gene expression and/or transcript stability. Alternatively, the residual

STAT92E protein in c564-Gal80ts>UAS-STAT92E IR flies might be sufficient for inducing expression

of certain genes that require a lower threshold of STAT activity.

Extracellular actin-induced STAT activation involves a Upd3 paracrine
cytokine loop in the fat body
Upd3 produced by haemocytes is essential to induce STAT responses in the fat body or in the intes-

tine of flies subjected to septic injury or a high fat diet (Agaisse et al., 2003; Chakrabarti et al.,

2016; Woodcock et al., 2015). To determine if haemocytes were similarly required for the fat body

STAT response to actin, we genetically ablated them in adult flies using two haemocyte-specific (cro-

quemort or Hemolectin) temperature-sensitive Gal80ts-Gal4 drivers crossed to a UAS-rpr strain

encoding Reaper, a protein that induces apoptosis. Ablation of haemocytes in flies containing UAS-

rpr, but not in control flies, was confirmed by confocal microscopy taking advantage of a fluorescent

reporter protein to mark the cells (Figure 5a, b). Despite the near-complete elimination of haemo-

cytes, TotM induction in response to actin in UAS-rpr flies was indistinguishable from that in controls

(Figure 5c), indicating that haemocytes are redundant. We further established that haemocyte-

derived Upd3 is dispensable by using a upd3 RNAi line crossed to another line carrying a Hemolec-

tin-Gal4 driver (Figure 5d). We therefore tested the possibility that Upd3 might be essential but

made by fat body cells themselves rather than haemocytes. Consistent with that notion, loss of the

TotM response to actin injection was seen when the upd3 RNAi line was crossed to a line bearing a

r4-Gal4 fat body driver (Figure 5d). Similar results were obtained using a different fat body driver

(c564-Gal4), this time under the control of Gal80ts (Figure 5e). In contrast to Upd3, knockdown of

Upd1 and Upd2 in fat body cells had no effect on the response to actin (Figure 5e), confirming

Upd3 as the key cytokine. We conclude that extracellular actin leads to Upd3 production by fat

Figure 2 continued

not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). If not otherwise indicated, flies were injected with 36.8 ng of actin per fly. All data points

are plotted even where no bars are visible.

DOI: 10.7554/eLife.19662.004

The following figure supplements are available for figure 2:

Figure supplement 1. G-actin and F-actin induced TotM peaks after 24 hr.

DOI: 10.7554/eLife.19662.005

Figure supplement 2. TotM is selectively induced by injected actin.

DOI: 10.7554/eLife.19662.006
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body cells, which acts in an autocrine or paracrine fashion via Domeless to induce STAT activation

and induction of STAT response genes.

Response to extracellular actin requires activation of Src42A and Shark
in the fat body
There is no DNGR-1 orthologue in Drosophila. Furthermore, the ability of G-actin to trigger TotM

suggested that a functionally-equivalent receptor is not involved. However, it was conceivable that

signalling pathways downstream of DNGR-1 activation by F-actin might also be employed in the

fruit fly response to extracellular G-actin. We therefore tested the requirement for Shark, a non-

receptor tandem SH2 kinase and Drosophila Syk orthologue (Fernandez et al., 2000). Indeed, con-

ditional silencing of Shark in adult flies using a ubiquitous driver led to a significant reduction in
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The following figure supplement is available for figure 4:

Figure supplement 1. STAT-dependence of selected actin-induced or -repressed genes.

DOI: 10.7554/eLife.19662.009
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TotM expression upon actin injection (Figure 6a). Next, we asked whether the fat body itself might

be the primary site of Shark signalling. Consistent with that notion, knockdown of Shark within the

fat body using a c564-Gal80ts driver led to a large reduction in the levels of actin-induced TotM in

total flies that had been shifted to the restrictive temperature (Figure 6b). This result was con-

firmed using a different driver (r4-Gal4) that led to constitutively reduced Shark levels in the fat

body (Figure 6c). Shark activation occurs downstream of Src family kinase activity

(Ziegenfuss et al., 2008; Evans et al., 2015). Silencing of the Src family kinase Src42A using a

ubiquitous temperature-sensitive driver also led to a striking reduction in actin-induced TotM levels

(Figure 6d). As for Shark, Src42A was specifically required in the fat body because silencing with

fat body-specific drivers also led to complete loss of actin-induced TotM (Figure 6d). In keeping

with the knockdown data, overexpression of a dominant negative allele of Src42A (Src42ADN) using

an ubiquitous or fat body-specific driver similarly led to a marked reduction in actin-driven TotM

levels (Figure 6e). Finally, the overexpression of a constitutively active form of Src42A within the

fat body was sufficient to induce a TotM response that was comparable in magnitude to that

induced by actin injection (Figure 6f).

Uptake of axonal debris by glial cells and responses to wound healing in Drosophila both require

Src42A phosphorylation of the ITAM-bearing receptor Draper (drpr), which serves as a platform for

Shark recruitment (Ziegenfuss et al., 2008; Evans et al., 2015). We found that drpr null mutants dis-

played a reduced TotM response to actin injection (Figure 6—figure supplement 1a). However, this

reduction was not specific to Draper loss as it could not be rescued by complementation (Figure 6—

figure supplement 1b, c). Consistent with that finding, conditional RNAi-mediated knockdown of

drpr in the fat body had no effect (Figure 6—figure supplement 1d). We conclude that expression

of Src42A and Shark in the fat body, but not of Draper, are essential for the response to extracellular

actin.

Response to extracellular actin requires Nox and generation of H2O2 in
the fat body
Src family kinases are redox sensitive (Giannoni et al., 2005) and can be activated by wound-derived

H2O2 in both zebrafish and Drosophila (Yoo et al., 2011; Niethammer et al., 2009; Razzell et al.,

2013; Evans et al., 2015). Consistent with a requirement for superoxide in the response to extracel-

lular actin, conditional expression of cytoplasmic superoxide dismutase (Sod) (Missirlis et al., 2003)

ubiquitously or in the fat body diminished TotM induction by injected actin (Figure 7a). H2O2 can be

generated by either of two conserved NADPH oxidases, dual oxidase (Duox) and NADPH oxidase

(Nox), both of which are present as single family members in the Drosophila melanogaster genome

(Bae et al., 2010). Conditional knockdown of Duox in the fat body of adult flies had no effect on the

TotM response to injected actin (Figure 7b). In contrast, RNAi-mediated knockdown of Nox

completely abrogated TotM induction, especially when using the c564 fat body-restricted driver

(Figure 7c, d). Together, these data suggest that extracellular actin leads to Nox activity in the fat

body, which causes oxidation-dependent activation of Src42A and phosphorylation and activation of

downstream targets, including Shark.

Septic injury is accompanied by actin release into haemolymph and
Nox/Src42A-dependent TotM induction in the fat body
Previous studies have shown that septic injury of adult flies leads to JAK/STAT activation and TotM

induction in the fat body (Brun et al., 2006; Agaisse et al., 2003). Using a model of septic injury

with either Escherichia coli or Micrococcus luteus, we found rapid accumulation of actin in the hae-

molymph of infected flies but not mock (uninfected) controls (Figure 8a). As previously described,

Figure 5 continued

control (w1118), UAS-upd1 IR, UAS-upd2 IR or UAS-upd3 IR lines shifted to the restrictive temperature, 24 hr after injection with actin. Data are

representative of three independent experiments with 5–10 flies/sample and triplicate samples. TotM relative levels were calculated using the

housekeeping gene Rp49 as a reference gene. Bars represent mean ± SEM. Statistical analysis was performed using one-way ANOVA with Sidak’s

multiple comparison test as post-test for pairwise comparisons. Results of Sidak’s multiple comparison test are shown (ns, not significant; *p<0.05;

**p<0.01; ***p<0.001; ****p<0.0001). All data points are plotted even where no bars are visible.
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Figure 6. Extracellular actin-induced TotM expression requires Shark and Src42A in the fat body. (a)TotM expression levels in flies that lack Shark

ubiquitously (Tub-Gal80ts; Tub-Gal4 > UAS-Shark IR R2/Fr) or in control flies lacking a driver (w1118 > UAS-Shark IR R2/Fr), 24 hr after injection with

either buffer or actin. Data are representative of three independent experiments with 5–10 flies/sample with duplicate samples. (b) Flies lacking Shark

selectively in the fat body (c564-Gal80ts > UAS-Shark IR R2/Fr) or control flies lacking a driver (w1118 > UAS-Shark IR R2/Fr) were injected with either

buffer or actin. Relative TotM levels 24 hr post injection are depicted. Data are representative of two independent experiments with 5–10 flies/sample

and triplicate samples. (c) The relative TotM expression in a constitutive fat body driver line (r4-Gal4) crossed to control (w1118) or UAS-Shark IR (R2/R3),

24 hr after injection with actin. Data are representative of three independent experiments with 5–10 flies/sample and duplicate samples. (d) Relative

TotM levels in flies lacking Src42A either ubiquitously (Tub-Gal80ts > UAS-Src42A IR) or selectively in the fat body (c564-Gal80ts > UAS-Src42A IR)

compared to control flies lacking a driver (w1118 > UAS-Src42A IR), 24 hr after injection with either buffer or actin. Data are representative of three

independent experiments with 5–10 flies/sample with duplicate samples. (e) Relative TotM levels in flies expressing a dominant negative version of

Src42A ubiquitously (Tub-Gal80ts > UAS-Src42ADN), within the fat body (c564-Gal80ts > UAS-Src42ADN) or in the absence of a driver (w1118 > UAS-

Src42ADN), 24 hr after injection with either buffer or actin. No driver control refers to Tub-Gal80ts; UAS-Src42ADN/TM6C.Sb1. No UAS control refers to

c564-Gal4; Tub-Gal80ts/TM6C.Sb1. Data are representative of two independent experiments with 5–10 flies/sample with triplicate samples. (f) Relative
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septic injury was accompanied by the induction of TotM (Figure 8b). Strikingly, knockdown of Nox

in the fat body led to roughly a 40% reduction in TotM while knockdown of Src42A completely

abrogated the response (Figure 8b). Importantly, expression of the Toll- or and Imd-regulated

AMPs, Dpt and Drs, was unaltered by Nox or Src42A knockdown in the fat body (Figure 8c, d).

These data are consistent with the possibility that actin released into the haemolymph after septic

injury can trigger JAK/STAT activation in the fat body via the Nox/Src42A-dependent pathway

described here.

Discussion
Inflammation is a response to microbial invasion or tissue damage designed to eliminate the offend-

ing stimulus, clear debris and stimulate tissue repair. While we have learned much about the path-

ways that trigger inflammation in response to pathogen invasion (Medzhitov, 2010; Takeuchi and

Akira, 2010), we still understand relatively little about induction of sterile inflammation following tis-

sue injury (Rock et al., 2010). Importantly, dysregulated and/or chronic inflammation, often of sterile

origin, is increasingly recognised as a contributing factor to a vast range of human diseases, from

cancer to neurodegeneration (Okin and Medzhitov, 2012; Rock and Kono, 2008; Heneka et al.,

2015; Zelenay and Reis e Sousa, 2013; Hanahan and Weinberg, 2011). Furthermore, because

injury and infection often overlap, our understanding of immunity necessitates a consideration of the

interplay between the processes that detect pathogen invasion and those that sense tissue damage.

The study of invertebrate responses to DAMPs might therefore lead to a new understanding of ster-

ile inflammation and the identification of conserved elicitors, detectors and signaling pathways that

are utilised across evolution to detect loss of cell integrity.

We and others have previously reported that actin, one of the most abundant and conserved pro-

teins in eukaryotic cells, acts as a DAMP in mouse and humans, binding to DNGR-1, a Src and Syk-

coupled dead cell receptor expressed on DCs (Ahrens et al., 2012; Sancho et al., 2009;

Zhang et al., 2012; Hanč et al., 2015). Here, we provide evidence that actin is also a DAMP in Dro-

sophila melanogaster, triggering a response that, like in vertebrates, requires Syk and Src family kin-

ases. We show that the presence of extracellular actin in the haemolymph of Drosophila elicits a

reaction in the fat body via Shark and Src42A, whose activation depends on reactive oxygen species

(ROS) generated by the NADPH oxidase Nox. Consistent with our data, ROS generation by NADPH

oxidases is a highly conserved response to wounding (Nam et al., 2012; Takeishi et al., 2013) and

has been shown to directly activate Lyn/Src42A in zebrafish and Drosophila through oxidation of a

single redox-sensitive cysteine residue (Yoo et al., 2011; Niethammer et al., 2009; Evans et al.,

2015; Razzell et al., 2013).

In contrast to DNGR-1 dependent recognition, the fly response to extracellular actin is elicited

equally by G- and F-actin, does not require phagocytes but the fat body and its function is not to

prime adaptive immunity, which is absent in invertebrates. Rather, it is coupled to production of

Upd3 cytokine, which acts in an autocrine and paracrine manner to induce Domeless signalling via

STAT and to cause the induction of STAT-responsive genes, the products of which are released

into the haemolymph. This systemic inflammatory-like response involving cytokine amplification and

the fat body is reminiscent of the acute phase response in mammals, which can be triggered by

infection or trauma and leads to the production of cytokines such as IL-6 that act on the liver

Figure 6 continued

TotM levels between untreated (-) fat body driver line crossed to constitutively active Src42A (c564-Gal80ts > UAS-Src42ACA); untreated control flies

(c564-Gal80ts > w1118) and actin-injected control flies (c564-Gal80ts > w1118). Data are representative of three independent experiments with 5–10 flies/

sample with triplicate samples. TotM relative levels were calculated using the housekeeping gene Rp49 as a reference gene. Bars represent mean ±

SEM. Statistical analysis was performed using one-way (c, f) or two-way (a, b, d, e) ANOVA with Sidak’s multiple comparison test as post-test for

pairwise comparisons. Results of Sidak’s multiple comparison test are shown (ns, not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). All data

points are plotted even where no bars are visible.

DOI: 10.7554/eLife.19662.011

The following figure supplement is available for figure 6:

Figure supplement 1. Extracellular actin-induced TotM expression is independent of Draper.

DOI: 10.7554/eLife.19662.012
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(mammalian equivalent of the fat body) to cause production of acute phase proteins (Medzhi-

tov, 2010; Kopf et al., 1994). These are secreted into the plasma to regulate multiple processes

such as host defence, coagulation, vascular permeability and metabolism (Medzhitov, 2010). Simi-

larly, the Drosophila fat body response to actin results in secretion into the haemolymph of pro-

teins that may regulate multiple aspects of fly physiology that coordinately impact resistance or

tolerance to insult. However, it is important to note that while some components of the extracellu-

lar actin-sensing circuitry are conserved between flies and mammals (Shark, Src42A and ROS),

others are not (DNGR1, cross-presentation, dendritic cells). These differences suggest that DAMPs

can be more conserved than their receptors or the responses they evoke. This is akin to pathogen-

associated molecular patterns (PAMPs) such as, for example, lipopolysaccharide (LPS), a hallmark

of Gram-negative bacteria. The sensing of LPS is conserved in plants, protists and animals, but the

relevant receptors and subsequent responses diverge depending on the host (Neyen et al., 2014).

a b

TotM 

0

2

4

6

8

R
e
la

ti
v
e
 m

R
N

A
/R

p
4

9

w1118

UAS-Duox IR (692)

UAS-Duox IR (934)

c564-Gal80ts >

ns

ns

c

0

4

8

12

R
e
la

ti
v
e
 m

R
N

A
/R

p
4

9

TotM 

**
*

w1118

UAS-Nox IR (559)

UAS-Nox IR (753)

Tub-Gal80ts >

d

0

1

2

3

4

R
e
la

ti
v
e
 m

R
N

A
/ R

p
4

9

TotM 

UAS-Nox IR (753)

UAS-Nox IR (559)

c564-Gal80ts >

w1118

****

****

Actin
Actin

Actin Actin

Tub-Gal80ts c564-Gal80ts
0

4

8

12
TotM 

R
e
la

ti
v
e
 m

R
N

A
/R

p
4

9

>w1118 

>UAS-Sod 

***

***

Figure 7. Extracellular actin-induced TotM expression is dependent on the NADPH oxidase Nox. (a) Flies overexpressing superoxide dismutase (Sod)

either ubiquitously (Tub-Gal80ts; Tub-Gal4 > UAS-Sod) or in the fat body (Tub-Gal80ts; c564-Gal4 > UAS-Sod) or control flies without transgene (Tub-

Gal80ts; c564-Gal4 > w1118 or Tub-Gal80ts; Tub-Gal4 > w1118) were injected with actin. TotM expression 24 hr post injection is shown. In order to

increase statistical power, data were pooled from two independent experiments with 5–10 flies/sample and quadruplicate samples. (b) TotM expression

levels 24 hr post actin injection in flies in which Duox was knocked down in the fat body (Tub-Gal80ts; c564-Gal4 > UAS-Duox IR). Data are

representative of two independent experiments with 5–10 flies/sample and triplicate samples. (c–d) TotM expression levels in flies in which Nox was

knocked down either ubiquitously (c) (Tub-Gal80ts; Tub-Gal4 > UAS-Nox IR) or in the fat-body (d) (Tub-Gal80ts; c564-Gal4 > UAS-Nox IR) compared to

control flies lacking RNAi (Tub-Gal80ts; Tub-Gal4 > w1118 or Tub-Gal80ts; c564-Gal4 > w1118), 24 hr after injection with actin. Data are representative of

two independent experiments with 5–10 flies/sample and triplicate samples. TotM relative levels were calculated using the housekeeping gene Rp49 as

a reference gene. Bars represent mean ± SEM. Statistical analysis was performed using one-way ANOVA with Sidak’s multiple comparison test as post-

test for pairwise comparisons. Results of Sidak’s multiple comparison test are shown (ns, not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).

All data points are plotted even where no bars are visible.

DOI: 10.7554/eLife.19662.013
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Similarly, peptidoglycans and b-glucans are used in both flies and mammals to signify bacterial or

fungal presence, yet are detected by different receptors that, nevertheless, can couple to con-

served signalling pathways.

The JAK/STAT pathway in Drosophila can be induced by mechanical pressure, heat shock, dehy-

dration, cytopathic infection, septic wounds and other traumas (Ekengren et al., 2001;

Agaisse et al., 2003; Pastor-Pareja et al., 2008; Dostert et al., 2005). How such seemingly dispa-

rate stimuli trigger a single pathway is puzzling. However, a common denominator in all these set-

tings is cell death and it has been speculated that STAT activation might therefore occur in

response to DAMP release (Shaukat et al., 2015; Buchon et al., 2014). Our data support that
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Figure 8. Septic injury causes actin accumulation in hemolymph and TotM induction dependent on fat body expression of Nox and Src42A. (a)

Immunoblotting for actin in the haemolymph (Top) and Ponceau stain (bottom) of mock (uninfected), Escherichia coli or Micrococcus luteus infected

flies at 3 or 6 hr post infection. Data are representative of two independent experiments with 10 flies per sample. (b–d) Expression levels of TotM (b),

Dpt (c) or Drs (d) in flies, in which Nox or Src42A was knocked down in the fat-body (Tub-Gal80ts; c564-Gal4 > UAS-Nox IR or Tub-Gal80ts; c564-Gal4

>UAS-Src42A IR) compared to control flies (Tub-Gal80ts; c564-Gal4 > w1118), 24 hr after septic injury with a mixture of Escherichia coli and Micrococcus

luteus. In order to increase statistical power, data from two independent experiments with 5–10 flies/sample and duplicate samples were pooled.

DOI: 10.7554/eLife.19662.014

The following figure supplement is available for figure 8:

Figure supplement 1. Model for extracellular actin-induced JAK/STAT pathway activation.

DOI: 10.7554/eLife.19662.015

Srinivasan et al. eLife 2016;5:e19662. DOI: 10.7554/eLife.19662 15 of 25

Research article Immunology

http://dx.doi.org/10.7554/eLife.19662.014
http://dx.doi.org/10.7554/eLife.19662.015
http://dx.doi.org/10.7554/eLife.19662


notion and suggest that actin is a potent DAMP for triggering the JAK/STAT pathway. Notably,

pathogen infection in Anopheles gambiae and Drosophila melanogaster has been shown to lead to

the release of actin into the haemolymph, where it can act as an antibacterial or antiparasitic agent

(Vierstraete et al., 2004; Sandiford et al., 2015). Therefore, actin release may serve as a two-

pronged defense mechanism, both directly as an antimicrobial and indirectly by activating a sys-

temic JAK/STAT response.

The role of the systemic JAK/STAT response is unclear at present. Despite being commonly

used as a marker of STAT activation, the function of Tot and Tep proteins in Drosophila is

unknown. Nevertheless, genetic loss-of-function studies have implicated JAK/STAT signaling in

resistance and/or tolerance to viral, bacterial and parasitoid infections (Yang et al., 2015;

Agaisse et al., 2003; Agaisse and Perrimon, 2004; Brun et al., 2006; Dostert et al., 2005;

Lamiable et al., 2016; Chakrabarti et al., 2016; Kemp et al., 2013; Merkling et al., 2015). Fur-

thermore, the JAK/STAT pathway has a well-established role in maintenance of fly intestinal

homeostasis, both at steady state and following infection or injury (Biteau et al., 2011;

Kohlmaier et al., 2015; Jiang et al., 2009; Micchelli and Perrimon, 2006; Zhou et al., 2013;

Osman et al., 2012; Jiang et al., 2011; Beebe et al., 2010; Lin et al., 2010; Zhai et al., 2015).

Given these precedents, we attempted to investigate the role of the inducible actin-triggered

JAK/STAT circuit by injecting actin into flies prior to challenge with viruses (Flock house virus, Dro-

sophila C virus, Sindbis virus and Cricket paralysis virus) or bacteria (Erwinia carotovora, Escherichia

coli, Micrococcus luteus and Listeria monocytogenes) but failed to find an effect on either resis-

tance or tolerance to infection (data not shown). Similarly, in models of stress or injury (starvation,

heat shock, irradiation, paraquat feeding and a recently-described model of concussion

(Katzenberger et al., 2013, 2015)), we found no evidence of protection or susceptibility afforded

by actin pre-injection (data not shown). Finally, we have also not found an effect of actin injection

on fat body metabolism (data not shown). The failure to find a system in which prior upregulation

of STAT target genes by exogenous actin leads to a difference in outcome is a current experimen-

tal limitation. However, it might reflect the fact that STAT activation is already induced to sufficient

levels in those models in response to actin released from dying cells. Consistent with this notion,

we observed that septic injury led to a rapid increase in actin levels within the haemolymph. In

such a situation, additional induction of the STAT pathway by actin pre-injection may not confer

additional protection or tolerance. Reinforcing this notion is a recent study showing that loss of

basal Diedel levels leads to reduced tolerance to Sindbis virus, yet the upregulation of Diedel lev-

els that takes place during infection is itself dispensable (Lamiable et al., 2016). Unfortunately,

loss-of-function experiments to assess the effect of released actin on different challenges are not

feasible because actin is essential for viability. Surrogate loss-of-function experiments, such as

examining the role of Nox and Src42A or Shark in the fat body in the context of infection or injury,

have not been reported and their interpretation is complicated by the pleiotropic effects of those

proteins. Nevertheless, our finding that actin is released into the haemolymph upon septic injury

and that this induces JAK/STAT activation dependent on fat body expression of Src42A and Nox

may suggest that previous reports of septic injury-induced STAT activation can be partially

ascribed to extracellular actin.

The identity of the putative receptor that recognises extracellular actin in Drosophila remains

unknown. The requirement for Upd3 rules out the possibility that actin serves as a direct ligand for

Domeless, a conclusion further supported by the fact that actin does not induce TotM upregulation

in various Drosophila cell lines that respond to Upd cytokines in vitro (data not shown). Therefore,

the simplest interpretation of our data is that Upd3 is synthesised by fat body cells that detect

extracellular actin via a sensor(s) that couple(s) to a Nox-Src42A-Shark cascade (Figure 8—figure

supplement 1). By analogy with other receptors that engage a Syk-dependent pathway, that sen-

sor might be an ITAM- or hemITAM-bearing receptor or one that associates in trans with an ITAM-

containing signalling chain (Brubaker et al., 2015; Robinson et al., 2009). Interestingly, in Dro-

sophila responses to wounding and in the clearance of axonal debris and neuronal cell corpses,

one such receptor is Draper, a member of the Nimrod family and orthologue of C. elegans Ced1.

Draper contains an ITAM that is phosphorylated by Src42A (MacDonald et al., 2006;

Ziegenfuss et al., 2008; Razzell et al., 2013; Evans et al., 2015). However, we have found Draper

to be dispensable for TotM induction in response to actin injection. Similarly, we have not found a

role for Nimrod C1, C4 and the scavenger receptor CD36 (data not shown). Whether these data
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indicate the activity of an unknown receptor, multiple redundant receptors or an indirect sensing

mechanism, akin to the activation of the vertebrate NLRP3 receptor (Martinon et al., 2009), will

need to be investigated.

In sum, our data suggest that extracellular actin released by dead cells induces a response in

Drosophila that requires signalling in the fat body via the non-receptor tyrosine kinase, Shark, and

the Src family kinase, Src42A. This pathway leads to production of Upd cytokines that act in an

autocrine and paracrine manner to induce Domeless signalling via STAT and cause induction of

STAT-responsive genes (Figure 8—figure supplement 1). Thus, the presence of actin in the extra-

cellular space triggers a response previously associated with wounding and dead cell clearance,

indicating that actin exposure acts as an ancient sign of tissue damage and that actin constitutes

an evolutionarily-conserved DAMP. The notion that actin exposure can act as a universal sign of

cell damage might apply more generally to other cytoskeletal proteins.

Materials and methods

Fly stocks
Fly stocks were raised on standard cornmeal-agar medium at 25˚C. Adult female flies 3–6 days of

age were used in all experiments. For heat-shock induction of transgene expression, flies were

incubated for 20 min at 37˚C, followed by 30 min at 18˚C and another 20 min at 37˚C. After the

treatment, flies were allowed to recover for 6 hr at 25˚C before injection. For transgene induction

using the Gal80ts system, flies were shifted to 29˚C for three days prior to injection and were kept

at that temperature until euthanasia.

The following stocks were used:

Fly stock Description

w1118 Control strain

;;UAS-dome 4Cyt 2.3 Overexpression of a dominant negative form of the receptor domeless.

;UAS-dPIAS/cyO; Overexpression of the JAK/STAT pathway negative regulator dPIAS.

;if/cyO;Hs-Gal4 Heat shock-inducible, ubiquitous driver line.

w1118;;Hml4-Gal4,
UAS-2xeGFP,
Tub-Gal80ts/TM6C,Sb1;

Temperature-sensitive, haemocyte-specific driver line. Haemocytes are labelled with GFP.

w1118;;crq-Gal4, UAS-2xmRFP, Tub-Gal80ts/TM6C.Sb1 Temperature-sensitive, haemocyte-specific driver line. Haemocytes are labelled with RFP.

w;;UAS-rpr/TM3.Sb1 Overexpression line for pro-apoptotic protein reaper.

;;r4-Gal4/TM6C.Sb1 Constitutive fat body-specific driver line.

;;Stat92-dGFP Destabilised GFP expression under the control of a STAT response element. Bloomington
stock centre number: 21699

LPP-Gal4-UAS-Myr-td-Tom Fat body line, made from LPP-Gal4 (FRT-LPPGal4-G-FRT/Tm3,Zit(Sb) from Pierre Leopold;
10XUAS-IVS-myr::tdTomato from Bloomington (BL32221).

w1118;Tub-Gal80ts;Tub-Gal4/TM6C.Sb1 Temperature-sensitive, ubiquitous driver line.

;UAS-Shark IR;
(Shark R2 RNAi)

National Institute of Genetics stock number: 18247 R-2

;UAS-Shark IR;
(Shark R3 RNAi)

National Institute of Genetics stock number: 18247 R-3

;UAS-Shark IR;
(Shark Fr RNAi)

Interfering RNA for knockdown of shark. Kindly donated by Marc Freeman.

w;c564-Gal4;Tub-Gal80ts Temperature-sensitive fat body-specific driver line.

;UAS-Src42A IR V10708RNAi Interfering RNA for knockdown of Src42A.

;;UAS-Src42ADN Overexpression of a dominant negative form of Src42A.

UAS-Src42ACA Bloomington stock centre number: 6410. The DNA sequence encoding the constitutively
active form of Src42A (Src42ACA) has an amino acid substitution of Tyr511 to Phe. Tyr511

corresponds to the inhibitory C-terminal Tyr of Src.

UAS-Nox IR (753) VDRC ID: 100753
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UAS-Nox IR (559) VDRC ID: 102559

UAS-Duox IR (692) Bloomington stock centre number: 32903

UAS-Duox IR (934) Bloomington stock centre number: 33975

;;drprD5 Null mutant for the receptor Draper. Kindly donated by Marc Freeman.

UAS-drpr IR (4833) VDRC ID: 4833

UAS-drpr IR (4830) VDRC ID: 4830

UAS-drpr IR (27084) VDRC ID: 27084

UAS-drpr IR (27086) VDRC ID: 27086

;FB-Gal4; Constitutive fat body-specific driver line.

UAS-Sod Bloomington stock centre number: 24750

Injections and infections
Unless stated otherwise, for actin injection, a 1 mg/ml purified rabbit muscle or human non-muscle

G-actin (Cytoskeleton Inc., CO, USA) solution was prepared in G-actin buffer (5 mM Tris HCl [pH 8.0]

+0.2 mM CaCl2) as per manufacturer’s instructions and 36.8 nl was administered to flies by intratho-

racic injection (Nanoject II apparatus; Drummond Scientific, PA, USA). Injection of the same volume

of G-actin buffer was used as a control. For experiments comparing G-actin and F-actin, human non-

muscle G-actin was either stabilised with 100 mM latrunculin B or polymerised in F-actin buffer (10

mM Tris-HCl [pH 7.5]+50 mM KCl + 2 mM MgCl2 and 1 mM ATP) in the presence of 5 mM phalloidin.

For experiments with non-polymerisable G-actin, we used Drosophila 5C actin and created a Delta

D-loop mutant that has residues 41–51 deleted (HQGVMVGMGQK). This mutant was expressed and

purified as described (Zahm et al., 2013).

For other test substances, in all cases a 36.8 nl volume of each sample was injected. They

included 1 mg/ml purified human HSP70 (Enzo Life Sciences, NY, USA), 1 mg/ml purified human

HSP90 (Abcam, UK), 1 mg/ml monosodium urate crystals (Invivogen) and 1 mM ATP (Cytoskeleton

Inc.), prepared as per manufacturer’s instructions. Genomic DNA was extracted from Drosophila.

Briefly, flies were collected and mashed in extraction buffer (10 mM Tris-HCl pH 8.2, 1 mM EDTA, 25

mM NaCl, 200 mg/ml Proteinase K). Subsequently, the sample was incubated at 37˚C for 1 hr and

the protease inactivated by heating to 95˚C. DNA was purified using a column-based method

(Qiagen, Germany). Concentration of the injected DNA was 14 ng/ml in water. KCl, CsCl, NaCl,

Sucrose (Thermo Fisher Scientific, MA, USA) and Dextrose (Sigma, MO, USA) were dissolved in

water and used at 100 mM. Sunflower and olive oil were from Sainsbury’s and used neat. Trypsin

inhibitor from bovine pancreas, heparin, chondroitin, glucagon, insulin (Sigma) and glutathione

(Merck-Millipore, Germany) were prepared as 1 mg/ml solutions in PBS. Amino acids were used at a

concentration of 34–500 mM in water and purchased from Sigma. For denaturation, actin was

diluted in G-actin buffer supplemented with 100 mM DTT. An aliquot of that solution was denatured

by heat treatment (10 min at 95˚C). The heat-denatured and untreated actin aliquots were loaded

into separate Dialysis Cassettes with a 3.5K molecular weight cut-off (Slide-A-Lyzer; Thermo Fisher

Scientific). Dialysis was performed overnight at 4˚C against PBS. Following dialysis, protein concen-

tration in the samples was measured by BCA (Thermo Fisher Scientific) and equalised before

injection.

For microbial infections, Escherichia coli and Micrococcus luteus were grown overnight in Lysog-

eny Broth at 37˚C with shaking at 220 rpm. Candida albicans was grown overnight in yeast peptone

dextrose media at 30˚C with shaking at 220 rpm. Flies were pricked in their thorax with a needle

dipped in concentrated microbial suspension (optical density of 400).

Generation of germ-free and Wolbachia-free flies
Germ-free flies were generated by decontaminating fly embryos with bleach (2% sodium hypochlo-

rite) for 10 min. Embryos were subsequently washed in ethanol (70%) for 5 min, followed by washing

with sterile water. Finally the embryos were transferred using an autoclaved brush and reared on

axenic food until use. Wolbachia-free flies were generated as previously described (Chrostek et al.,

2013).
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Transcript analysis
Unless otherwise indicated, each experimental point was obtained by injecting or infecting one or

more pools of 5–10 individual flies. Following termination of the experiment, flies were euthanised

and each pool was treated as a separate sample and stored at �20˚C until further use. For RNA

extraction, flies in each pool were mashed using a hand-held tissue homogenizer (Kimble, TN, USA)

and a small pestle (Sigma) before clarification by Qiashredder columns (Qiagen) and RNA was

extracted using a column-based method with DNAse treatment (Qiagen). cDNA synthesis was per-

formed using SuperScript II Reverse Transcriptase (Thermo Fisher Scientific), and random hexamers

(Thermo Fischer Scientific). cDNA was then diluted five times in nuclease-free water and analysed for

gene expression by qPCR using Express SYBR green universal master mix (Thermo Fisher Scientific).

Reactions were carried out using ABI 7500 Fast or QuantStudio 7 machines

(Thermo Fisher Scientific). Relative expression values were calculated from DCts using Rp49 house

keeping gene as a reference gene. Note that such relative expression values are not a reflection of

the actual relative transcript number as they are affected by PCR efficiency and by the fact that Rp49

is expressed ubiquitously in the fly whereas many of the targets measured here (e.g., TotM) are only

expressed in the fat body.

The following primers were utilised:

Gene Forward primer Reverse primer

Diedel GTGCGTGCAATCGAAAACTA CGTACTGCTGGTTCCTCCTC

Dpt GCTGCGCAATCGCTTCTACT TGGTGGAGTGGGCTTCATG

Drs CGTGAGAACCTTTTCCAATATGATG TCCCAGGACCACCAGCAT

Rp49 GACGCTTCAAGGGACAGTATCTG AAACGCGGTTCTGCATGAG

Tep1 TCTGTAAAGCGGGGTGAAGT CAGAGTAGTCAGGCCCACTT

Tep2 CCTCATGGGTGGTTACTGGT AGCAATTACCTCACCTCGCT

TotA GCACCCAGGAACTACTTG CATCT GACCTCCCTGAATCGGAACTC

TotB GGAACTCTATGCTCGGCCTA AATCTGTCCATTCTCGCCCT

TotM GCCAAGCCTGCACTATGAAT GCTGTCGATGTTCCGGTATT

RNAseq
For each time point, three replicate pools of 10 flies each were injected with either buffer or actin.

RNA was isolated from each pool before quality control checking using a Bioanalyzer and generation

of independent libraries. Sequencing was performed on the Illumina HiSeq 2500 platform and

generated ~53 million 100 bp paired end reads per sample. Sequenced reads were mapped to Fly-

base gene set (version 6.01) from BDGP6 assembly [http://flybase.org/], using RSEM (version 1.2.11)

(Li and Dewey, 2011). RSEM uses the bowtie2 alignment tool (Langmead and Salzberg, 2012).

Gene counts were filtered to remove genes with 10 or fewer mapped reads per sample. TMM

(treated mean of M-values) normalisation and differential expression analysis using the negative

binomial model was carried out with the R-Bioconductor package ’EdgeR’(Robinson et al., 2010)

(www.bioconductor.org version 3. 1.0). Genes with logCPM > 1 and FDR < 0.05 were judged to be

differentially expressed. Enrichment of fly pathways gene sets, downloaded from Fly Reactome

(http://fly.reactome.org/), were assessed using GSEA (Subramanian et al., 2005) with logFC pre-

ranked gene lists. Gene sets with an enrichment q value of less than 0.05 were judged to be statisti-

cally significant. Fastq data files are deposited in the NCBI Gene Expression Omnibus database

(GSE76150).

Promoter analysis
Genes induced by actin but not by buffer were identified and converted from Flybase IDs to Refseq

IDs using ENSEMBL biomart. These genes were then interrogated using PScan (Zambelli et al.,

2009) to identify overrepresented transcription factor binding motifs in the 500 bp region upstream
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of the start site with the TRANSFAC and JASPAR databases (Mathelier et al., 2014; Matys et al.,

2006).

Haemocyte ablation
Two haemocyte drivers (HmlD-Gal4, UAS-2xeGFP, Tub-Gal80ts/TM6C and crq-Gal4, UAS-2xmRFP,

Tub-Gal80ts/TM6C) were crossed to UAS-rpr for temporally controlled induction of the pro-apopto-

tic gene reaper in haemocytes. w1118 flies were crossed to the same haemocyte driver lines as a con-

trol. Flies were grown at a permissive temperature of 18˚C until adulthood and were then shifted to

the non-permissive temperature of 29˚C for three days to induce rpr expression and subsequent

apoptosis of haemocytes. Flies were injected with actin or actin buffer and processed as described

above. The lower dorsal thorax of at least two flies per cross was imaged using intravital confocal

microscopy to assess haemocyte ablation. For this purpose, the dorsal side of the flies was affixed

onto a coverslip using a drop of superglue, positioning the wings on the side. Flies were imaged

within 15 min and flies that died during the procedure were excluded from the analysis. Images

were acquired using an Invert LSM 710 laser scanning confocal microscope (Zeiss, Germany)

equipped with a 40X Oil NA 1.25 objective and analysed with ImageJ software.

Ex vivo imaging of fat body in dissected abdomen
The abdomens of 2–3 day old adult (;STAT92-dGFP/+, LPP-Gal4 + 10XUAS-IVS-myr::tdTomato/+)

females were dissected under a dissecting microscope on a silicone dish using forceps and microscis-

sors (Albert Heiss, Germany). The abdomen was first separated and the caudal end removed. The

remainder was cut along one of the sides, placed in a drop of PBS and the gut was removed. Finally,

the preparation was transferred onto a fresh drop of PBS on a glass bottom dish (MatTek Corpora-

tion P35G-0–10-C) with the exoskeleton side up and covered with a round coverglass

(VWR, PA, USA Cat. No 631–0150). All imaging was carried out at room temperature. Z stacks of

EGFP or RFP-expressing fat body cells in the abdomen with a 0.5 mm step size were taken using a

40�oil immersion objective lens on a Perkin Elmer UltraView spinning disc system. Images were cap-

tured using Volocity (Perkin Elmer, Waltham, MA, USA) and this set-up was also used to quantify

STAT activation. The Z-stacks were cropped to the proximal half of fat body cells (4–6 slices with a

0.5 mm step size) and were assembled into maximum projections with identical adjustments made to

contrast across experimental groups. Regions of interest within the cytoplasm of fat body cells were

selected and the mean intensity of the GFP channel was measured.

Haemolymph isolation and western blotting
Haemolymph was isolated by gently pricking flies in the thorax area using a 27G needle. 10 flies per

group were then rapidly transferred into a pre-chilled 0.5 ml microfuge tube (modified with a small

hole at the nib created using a 25G needle). This was then placed into a 1.5 ml microfuge collection

tube and spun for 5 min at 5000 rpm at 4˚C. The resulting small drop of haemolymph was diluted in

10 ml RIPA buffer (supplemented with protease inhibitors (Roche, Switzerland)). For Western blot,

haemolymph samples were diluted into Laemmli buffer, resolved using reducing SDS-PAGE and

transferred to nitrocellulose membranes (Merck-Millipore). Equivalent protein levels across samples

were confirmed by membrane staining with Ponceau Red dye. Actin levels were assessed by probing

membranes with HRP-linked monoclonal rabbit anti b-actin (clone 13E5, Cell Signaling

Technology, CA, USA). The signal was revealed with the SuperSignal West Pico Chemiluminescent

substrate kit (Thermo Fisher Scientific). Detection of F- and total actin by dot blot was carried out as

described (Ahrens et al., 2012; Hanč et al., 2015).
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