920 research outputs found

    The coronal plane maximum diameter of deep intracerebral hemorrhage predicts functional outcome more accurately than hematoma volume

    Get PDF
    Background: Among prognostic imaging variables, the hematoma volume on admission computed tomography (CT) has long been considered the strongest predictor of outcome and mortality in intracerebral hemorrhage. Aims: To examine whether different features of hematoma shape are associated with functional outcome in deep intracerebral hemorrhage. Methods: We analyzed 790 patients from the ATACH-2 trial, and 14 shape features were quantified. We calculated Spearman’s Rho to assess the correlation between shape features and three-month modified Rankin scale (mRS) score, and the area under the receiver operating characteristic curve (AUC) to quantify the association between shape features and poor outcome defined as mRS>2 as well as mRS > 3. Results: Among 14 shape features, the maximum intracerebral hemorrhage diameter in the coronal plane was the strongest predictor of functional outcome, with a maximum coronal diameter >∼3.5 cm indicating higher three-month mRS scores. The maximum coronal diameter versus hematoma volume yielded a Rho of 0.40 versus 0.35 (p = 0.006), an AUC[mRS>2] of 0.71 versus 0.68 (p = 0.004), and an AUC[mRS>3] of 0.71 versus 0.69 (p = 0.029). In multiple regression analysis adjusted for known outcome predictors, the maximum coronal diameter was independently associated with three-month mRS (p < 0.001). Conclusions: A coronal-plane maximum diameter measurement offers greater prognostic value in deep intracerebral hemorrhage than hematoma volume. This simple shape metric may expedite assessment of admission head CTs, offer a potential biomarker for hematoma size eligibility criteria in clinical trials, and may substitute volume in prognostic intracerebral hemorrhage scoring systems

    Enrichment of trace elements in the clay size fraction of mining soils

    Get PDF
    Reactive waste dumps with sulfide minerals pro- 14 mote acid mine drainage (AMD), which results in water and 15 soil contamination by metals and metalloids. In these systems, 16 contamination is regulated by many factors, such as mineral- 17 ogical composition of soil and the presence of sorption sites 18 on specific mineral phases. So, the present study dedicates 19 itself to understanding the distribution of trace elements in 20 different size fractions (<2-mm and <2-Îźm fractions) of min- 21 ing soils and to evaluate the relationship between chemical 22 and mineralogical composition. Cerdeirinha and Penedono, 23 located in Portugal, were the waste dumps under study. The 24 results revealed that the two waste dumps have high degree of 25 contamination by metals and arsenic and that these elements 26 are concentrated in the clay size fraction. Hence, the higher 27 degree of contamination by toxic elements, especially arsenic 28 in Penedono as well as the role of clay minerals, jarosite, and 29 goethite in retaining trace elements has management implica- 30 tions. Such information must be carefully thought in the reha- 31 bilitation projects to be planned for both waste dumps

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Constraints from muon g-2 and LFV processes in the Higgs Triplet Model

    Full text link
    Constraints from the muon anomalous magnetic dipole moment and lepton flavor violating processes are translated into lower bounds on v_Delta*m_H++ in the Higgs Triplet Model by considering correlations through the neutrino mass matrix. The discrepancy of the sign of the contribution to the muon anomalous magnetic dipole moment between the measurement and the prediction in the model is clarified. It is shown that mu to e gamma, tau decays (especially, tau to mu e e), and the muonium conversion can give a more stringent bound on v_Delta*m_H++ than the bound from mu to eee which is expected naively to give the most stringent one.Comment: 18 pages, 16 figure

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Proximity Dimensions and Scientific Collaboration among Academic Institutions in Europe: The Closer, the Better?

    Get PDF
    The main objective of this paper is to examine the effect of various proximity dimensions (geographical, cognitive, institutional, organizational, social and economic) on academic scientific collaborations (SC). The data to capture SC consists of a set of co-authored articles published between 2006 and 2010 by universities located in EU-15, indexed by the Science Citation Index (SCI Expanded) of the ISI Web of Science database. We link this data to institution-level information provided by the EUMIDA dataset. Our final sample consists of 240,495 co-authored articles from 690 European universities that featured in both datasets. Additionally, we also retrieved data on regional R&D funding from Eurostat. Based on the gravital equation, we estimate several econometrics models using aggregated data from all disciplines as well as separated data for Chemistry & Chemical Engineering, Life Sciences and Physics & Astronomy. Our results provide evidence on the substantial role of geographical, cognitive, institutional, social and economic distance in shaping scientific collaboration, while the effect of organizational proximity seems to be weaker. Some differences on the relevance of these factors arise at discipline level

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+μ+μ−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0μ+μ−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)μ+μ−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+μ+μ−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0μ+μ−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕμ+μ−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore