125 research outputs found

    Groundwater resources assessment using integrated geophysical techniques in the southwestern region of Peninsular Malaysia.

    Get PDF
    Combined geophysical techniques such as multi-electrode resistivity, induced polarization, and borehole geophysical techniques were carried out on volcano-sedimentary rocks in the north of Gemas as part of the groundwater resource’s investigations. The result identifies four resistivity units: the tuffaceous mudstone, tuffaceous sandstone, the tuff bed, and the shale layer. Two types of aquifer systems in terms of storage were identified within the area: one within a fracture system (tuff), which is the leaky area through which vertical flow of groundwater occurs, and an intergranular property of the sandy material of the aquifer which includes sandstone and tuffaceous sandstone. The result also reveals that the aquifer occupies a surface area of about 3,250,555 m2 with a mean depth of 43.71 m and a net volume of 9.798 × 107 m3. From the approximate volume of the porous zone (28 %) and the total aquifer volume, a usable capacity of (274.339 ± 30.177) × 107 m3 of water in the study area can be deduced. This study provides useful information that can be used to develop a much broader understanding of the nature of groundwater potential in the area and their relationship with the local geology

    Interpopulation crosses, inheritance study, and genetic variability in the brown planthopper complex, Nilaparvata lugens (Homoptera: Delphacidae)

    Get PDF
    Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F(1) and F(2) generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi (110) and Gpi (120), whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi (100) and Gpi (90) . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Immune Imprinting and Protection against Repeat Reinfection with SARS-CoV-2

    Get PDF
    More than 2 years into the coronavirus disease 2019 (Covid-19) pandemic, the global population carries heterogeneous immune histories derived from various exposures to infection, viral variants, and vaccination.1 Evidence at the level of binding and neutralizing antibodies and B-cell and T-cell immunity suggests that a history of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can have a negative effect on subsequent protective immunity.1 In particular, the immune response to B.1.1.529 (omicron) subvariants could be compromised by differential immune imprinting in persons who have had a previous infection with the original virus or the B.1.1.7 (alpha) variant.

    Protection against the omicron variant from previous SARS-CoV-2 infection

    Get PDF
    Natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicits strong protection against reinfection with the B.1.1.7 (alpha),1,2 B.1.351 (beta),1 and B.1.617.2 (delta)3 variants. However, the B.1.1.529 (omicron) variant harbors multiple mutations that can mediate immune evasion. We estimated the effectiveness of previous infection in preventing symptomatic new cases caused by omicron and other SARS-CoV-2 variants in Qatar. In this study, we extracted data regarding coronavirus disease 2019 (Covid-19) laboratory testing, vaccination, clinical infection data, and related demographic details from the national SARS-CoV-2 databases, which include all results of polymerase-chain-reaction (PCR) testing, vaccinations, and hospitalizations and deaths for Covid-19 in Qatar since the start of the pandemic

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar.

    Get PDF
    BACKGROUND: Waning of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (Covid-19) is a concern. The persistence of BNT162b2 (Pfizer-BioNTech) vaccine effectiveness against infection and disease in Qatar, where the B.1.351 (or beta) and B.1.617.2 (or delta) variants have dominated incidence and polymerase-chain-reaction testing is done on a mass scale, is unclear. METHODS: We used a matched test-negative, case-control study design to estimate vaccine effectiveness against any SARS-CoV-2 infection and against any severe, critical, or fatal case of Covid-19, from January 1 to September 5, 2021. RESULTS: Estimated BNT162b2 effectiveness against any SARS-CoV-2 infection was negligible in the first 2 weeks after the first dose. It increased to 36.8% (95% confidence interval [CI], 33.2 to 40.2) in the third week after the first dose and reached its peak at 77.5% (95% CI, 76.4 to 78.6) in the first month after the second dose. Effectiveness declined gradually thereafter, with the decline accelerating after the fourth month to reach approximately 20% in months 5 through 7 after the second dose. Effectiveness against symptomatic infection was higher than effectiveness against asymptomatic infection but waned similarly. Variant-specific effectiveness waned in the same pattern. Effectiveness against any severe, critical, or fatal case of Covid-19 increased rapidly to 66.1% (95% CI, 56.8 to 73.5) by the third week after the first dose and reached 96% or higher in the first 2 months after the second dose; effectiveness persisted at approximately this level for 6 months. CONCLUSIONS: BNT162b2-induced protection against SARS-CoV-2 infection appeared to wane rapidly following its peak after the second dose, but protection against hospitalization and death persisted at a robust level for 6 months after the second dose. (Funded by Weill Cornell Medicine-Qatar and others.)

    Internet of Things in Agricultural Innovation and Security

    Get PDF
    The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the socio-environmental changes. A review of state-of-the-art communication architectures and underlying sensing technologies and communication mechanisms is presented with coverage of recent advances in the theory and applications of wireless underground communications. Major challenges in Ag-IoT design and implementation are also discussed
    corecore