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Abstract
In this paper, we introduce a new composite viscosity iterative algorithm and prove
the strong convergence of the proposed algorithm to a common fixed point of one
finite family of nonexpansive mappings and another infinite family of nonexpansive
mappings, which also solves a general mixed equilibrium problem and a finite family
of variational inequalities. An example is also provided in support of the main result.
The main result presented in this paper improves and extends some corresponding
ones in the earlier and recent literature.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, C be a nonempty
closed convex subset of H and PC be the metric projection of H onto C. Let S : C → C be
a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of all
real numbers. A mapping A : C → H is called α-inverse strongly monotone, if there exists
a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

A mapping A : C → H is called L-Lipschitz continuous if there exists a constant L > 
such that

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then A is called a nonexpansive mapping; if L ∈ (, ) then A is
called a contraction.
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Let A : C → H be a nonlinear mapping on C. We consider the following variational
inequality problem (VIP): find a point x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted by VI(C, A).
The VIP (.) was first discussed by Lions [] and now is well known; there are a lot of dif-

ferent approaches toward solving VIP (.) in finite-dimensional and infinite-dimensional
spaces, and the research is intensively continued. The VIP (.) has many applications
in computational mathematics, mathematical physics, operations research, mathematical
economics, optimization theory, and other fields; see, e.g., [–]. It is well known that, if
A is a strongly monotone and Lipschitz continuous mapping on C, then VIP (.) has a
unique solution. Not only the existence and uniqueness of solutions are important topics
in the study of VIP (.), but also how to actually find a solution of VIP (.) is impor-
tant.

In , Korpelevich [] proposed an iterative algorithm for solving the VIP (.) in Eu-
clidean space Rn:

{
yn = PC(xn – τAxn),
xn+ = PC(xn – τAyn), ∀n ≥ ,

with τ >  a given number, which is known as the extragradient method. The litera-
ture on the VIP is vast and Korpelevich’s extragradient method has received much at-
tention by many authors, who improved it in various ways; see, e.g., [–] and references
therein, to name but a few. In particular, motivated by the idea of Korpelevich’s extragra-
dient method [], Nadezhkina and Takahashi [] introduced an extragradient iterative
scheme:

⎧
⎪⎨

⎪⎩

x = x ∈ C chosen arbitrary,
yn = PC(xn – λnAxn),
xn+ = αnxn + ( – αn)SPC(xn – λnAyn), ∀n ≥ ,

(.)

where A : C → H is a monotone, L-Lipschitz continuous mapping, S : C → C is a non-
expansive mapping and {λn} ⊂ [a, b] for some a, b ∈ (, /L) and {αn} ⊂ [c, d] for some
c, d ∈ (, ). They proved the weak convergence of {xn} generated by (.) to an element
of Fix(S) ∩ VI(C, A). Subsequently, given a contractive mapping f : C → C, an α-inverse
strongly monotone mapping A : C → H and a nonexpansive mapping T : C → C, Jung
([], Theorem .) introduced the following two-step iterative scheme by the viscosity
approximation method:

⎧
⎪⎨

⎪⎩

x = x ∈ C chosen arbitrary,
yn = αnf (xn) + ( – αn)TPC(xn – λnAxn),
xn+ = ( – βn)yn + βnTPC(yn – λnAyn), ∀n ≥ ,

(.)

where {λn} ⊂ (, α) and {αn}, {βn} ⊂ [, ). It was proven in [] that, if Fix(T) ∩
VI(C, A) = ∅, then the sequence {xn} generated by (.) converges strongly to q =
PFix(T)∩VI(C,A)f (q).
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On the other hand, we consider the general mixed equilibrium problem (GMEP) (see
also [, ]) of finding x ∈ C such that

Θ(x, y) + h(x, y) ≥ , ∀y ∈ C, (.)

where Θ , h : C × C → R are two bi-functions. The GMEP (.) has been considered and
studied by many authors; see, e.g., [–]. We denote the set of solutions of GMEP (.)
by GMEP(Θ , h). The GMEP (.) is very general, for example, it includes the following
equilibrium problems as special cases.

As an example, in [, , ], the authors considered and studied the generalized equi-
librium problem (GEP) which is to find x ∈ C such that

Θ(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C.

The set of solutions of GEP is denoted by GEP(Θ , A).
In [, , , ], the authors considered and studied the mixed equilibrium problem

(MEP) which is to find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C.

The set of solutions of MEP is denoted by MEP(Θ ,ϕ).
In [–], the authors considered and studied the equilibrium problem (EP) which is

to find x ∈ C such that

Θ(x, y) ≥ , ∀y ∈ C.

The set of solutions of EP is denoted by EP(Θ). It is worth to mention that the EP is an
unified model of several problems, namely, variational inequality problems, optimization
problems, saddle point problems, complementarity problems, fixed point problems, Nash
equilibrium problems, etc.

Throughout this paper, it is assumed as in [] that Θ : C × C → R is a bi-function
satisfying conditions (θ)-(θ) and h : C × C → R is a bi-function with restrictions (h)-
(h), where

(θ) Θ(x, x) =  for all x ∈ C;
(θ) Θ is monotone (i.e., Θ(x, y) +Θ(y, x) ≤ , ∀x, y ∈ C) and upper hemicontinuous in the

first variable, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(
tz + ( – t)x, y

) ≤ Θ(x, y);

(θ) Θ is lower semicontinuous and convex in the second variable;
(h) h(x, x) =  for all x ∈ C;
(h) h is monotone and weakly upper semicontinuous in the first variable;
(h) h is convex in the second variable.

For r >  and x ∈ H , let Tr : H → C be a mapping defined by

Trx =
{

z ∈ C : Θ(z, y) + h(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

called the resolvent of Θ and h.
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In , Marino et al. [] introduced a multi-step iterative scheme

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
xn+ = αnf (xn) + ( – αn)Tyn,N ,

(.)

with f : C → C a ρ-contraction and {αn}, {βn,i} ⊂ (, ), {rn} ⊂ (,∞), which generalizes
the two-step iterative scheme in [] for two nonexpansive mappings to a finite family of
nonexpansive mappings T , Si : C → C, i = , . . . , N , and proved that the proposed scheme
(.) converges strongly to a common fixed point of the mappings that is also an equilib-
rium point of the GMEP (.).

More recently, Marino et al.’s multi-step iterative scheme (.) was extended to develop
the following composite viscosity iterative algorithm by virtue of Jung’s two-step iterative
scheme (.).

Algorithm CPY (see (.) in []) Let f : C → C be a ρ-contraction and A : C → H be
an α-inverse strongly monotone mapping. Let Si, T : C → C be nonexpansive mappings
for each i = , . . . , N . Let Θ : C × C → R be a bi-function satisfying conditions (θ)-(θ)
and h : C × C → R be a bi-function with restrictions (h)-(h). Let {xn} be the sequence
generated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)TPC(yn,N – λnAyn,N ),
xn+ = ( – βn)yn + βnTPC(yn – λnAyn), ∀n ≥ ,

(.)

where {λn} is a sequence in (, α) with  < lim infn→∞ λn ≤ lim supn→∞ λn < , {αn}, {βn}
are sequences in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < , {βn,i} is a sequence in
(, ) for each i = , . . . , N , and {rn} is a sequence in (,∞) with lim infn→∞ rn > .

It was proven in [] that the proposed scheme (.) converges strongly to a common
fixed point of the mappings T , Si : C → C, i = , . . . , N , that is also an equilibrium point of
the GMEP (.) and a solution of the VIP (.).

In this paper, we introduce a new composite viscosity iterative algorithm for find-
ing a common element of the solution set GMEP(Θ , h) of GMEP (.), the solution set
⋂M

k= VI(C, Ak) of a finite family of variational inequalities for inverse strongly mono-
tone mappings Ak : C → H , k = , . . . , M, and the common fixed point set

⋂N
i= Fix(Si) ∩

⋂∞
n= Fix(Tn) of one finite family of nonexpansive mappings Si : C → C, i = , . . . , N , and

another infinite family of nonexpansive mappings Tn : C → C, n = , , . . . , in the setting
of the infinite-dimensional Hilbert space. The iterative algorithm is based on viscosity ap-
proximation method [] (see also []), Mann’s iterative method, Korpelevich’s extragra-
dient method and the W -mapping approach to common fixed points of finitely many non-
expansive mappings. Our aim is to prove that the iterative algorithm converges strongly
to a common fixed point of the mappings Si, Tn : C → C, i = , . . . , N , n = , , . . . , which
is also an equilibrium point of GMEP (.) and a solution of a finite family of variational
inequalities for inverse strongly monotone mappings Ak : C → H , k = , . . . , M.
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2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty, closed, and convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn} and ωs(xn) to denote the strong
ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{

x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}
}

and

ωs(xn) :=
{

x ∈ H : xni → x for some subsequence {xni} of {xn}
}

.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

The following properties of projections are useful and pertinent to our purpose.

Proposition . Given any x ∈ H and z ∈ C. One has
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;

(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈ H , which hence implies that PC is

nonexpansive and monotone.

Definition . A mapping T : H → H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently, if T is -inverse
strongly monotone (-ism),

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =



(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.

Definition . Let T be a nonlinear operator with the domain D(T) ⊂ H and the range
R(T) ⊂ H . Then T is said to be

(i) monotone if

〈Tx – Ty, x – y〉 ≥ , ∀x, y ∈ D(T);
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(ii) β-strongly monotone if there exists a constant β >  such that

〈Tx – Ty, x – y〉 ≥ η‖x – y‖, ∀x, y ∈ D(T);

(iii) ν-inverse strongly monotone if there exists a constant ν >  such that

〈Tx – Ty, x – y〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈ D(T).

It can easily be seen that if T is nonexpansive, then I –T is monotone. It is also easy to see
that the projection PC is -ism. Inverse strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if A is η-inverse strongly monotone, then A is
monotone and 

η
-Lipschitz continuous. Moreover, we also have, for all u, v ∈ C and λ > ,

∥∥(I – λA)u – (I – λA)v
∥∥ =

∥∥(u – v) – λ(Au – Av)
∥∥

= ‖u – v‖ – λ〈Au – Av, u – v〉 + λ‖Au – Av‖

≤ ‖u – v‖ + λ(λ – η)‖Au – Av‖. (.)

So, if λ ≤ η, then I – λA is a nonexpansive mapping from C to H .
We need some facts and tools in a real Hilbert space H , which are listed as lemmas

below.

Lemma . Let X be a real inner product space. Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈ H ;
(b) ‖λx + μy‖ = λ‖x‖ + μ‖y‖ – λμ‖x – y‖ for all x, y ∈ H and λ,μ ∈ [, ] with

λ + μ = ;
(c) if {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈ H .

Let {Tn}∞n= be an infinite family of nonexpansive self-mappings on C and {λn}∞n= be a
sequence of nonnegative numbers in [, ]. For any n ≥ , define a mapping Wn on C as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,
Un,n = λnTnUn,n+ + ( – λn)I,
Un,n– = λn–Tn–Un,n + ( – λn–)I,
. . . ,
Un,k = λkTkUn,k+ + ( – λk)I,
Un,k– = λk–Tk–Un,k + ( – λk–)I,
. . . ,
Un, = λTUn, + ( – λ)I,
Wn = Un, = λTUn, + ( – λ)I.

(.)
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Such a mapping Wn is called the W -mapping generated by Tn, Tn–, . . . , T and λn,λn–,
. . . ,λ.

Lemma . (see []) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such that
⋂∞

n= Fix(Tn) = ∅ and let {λn}∞n= be a sequence in (, b] for some b ∈ (, ). Then, for ev-
ery x ∈ C and k ≥  the limit limn→∞ Un,kx exists where Un,k is defined as in (.).

Remark . (see Remark . in []) It can be known from Lemma . that if D is a
nonempty bounded subset of C, then for ε >  there exists n ≥ k such that, for all n > n,

sup
x∈D

‖Un,kx – Ukx‖ ≤ ε.

Remark . (see Remark . in []) Utilizing Lemma ., we define a mapping W : C →
C as follows:

Wx = lim
n→∞ Wnx = lim

n→∞ Un,x, ∀x ∈ C.

Such a W is called the W -mapping generated by T, T, . . . , and λ,λ, . . . . Since Wn is
nonexpansive, W : C → C is also nonexpansive. Indeed, observe that, for each x, y ∈ C,

‖Wx – Wy‖ = lim
n→∞‖Wnx – Wny‖ ≤ ‖x – y‖.

If {xn} is a bounded sequence in C, then we put D = {xn : n ≥ }. Hence, it is clear from
Remark . that for an arbitrary ε >  there exists N ≥  such that, for all n > N,

‖Wnxn – Wxn‖ = ‖Un,xn – Uxn‖ ≤ sup
x∈D

‖Un,x – Ux‖ ≤ ε.

This implies that

lim
n→∞‖Wnxn – Wxn‖ = .

Lemma . (see []) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such that
⋂∞

n= Fix(Tn) = ∅, and let {λn}∞n= be a sequence in (, b] for some b ∈ (, ). Then Fix(W ) =
⋂∞

n= Fix(Tn).

Lemma . (see [], Demiclosedness principle) Let C be a nonempty, closed, and convex
subset of a real Hilbert space H . Let S be a nonexpansive self-mapping on C with Fix(S) = ∅.
Then I –S is demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some
x ∈ C and the sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y.
Here I is the identity operator of H .

Lemma . Let A : C → H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition .(i)) implies

u ∈ VI(C, A) ⇔ u = PC(u – λAu), ∀λ > .
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Lemma . Let f : C → C be a ρ-contraction. Then I – f : C → H is ( –ρ)-strongly mono-
tone, i.e.,

〈
(I – f )x – (I – f )y, x – y

〉 ≥ ( – ρ)‖x – y‖, ∀x, y ∈ C.

Lemma . (see []) Let {an} be a sequence of nonnegative real numbers satisfying

an+ ≤ ( – sn)an + snbn + tn, ∀n ≥ ,

where {sn}, {tn}, and {bn} satisfy the following conditions:
(i) {sn} ⊂ [, ] and

∑∞
n= sn = ∞;

(ii) either lim supn→∞ bn ≤  or
∑∞

n= |snbn| < ∞;
(iii) tn ≥  for all n ≥ , and

∑∞
n= tn < ∞.

Then limn→∞ an = .

In the sequel, we will denote by GMEP(Θ , h) the solution set of GMEP (.).

Lemma . (see []) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let Θ : C×C → R be a bi-function satisfying conditions (θ)-(θ) and h : C×C →
R is a bi-function with restrictions (h)-(h). Moreover, let us suppose that

(H) for fixed r >  and x ∈ C, there exist a bounded K ⊂ C and x̂ ∈ K such that for all
z ∈ C \ K , –Θ(x̂, z) + h(z, x̂) + 

r 〈x̂ – z, z – x〉 < .
For r >  and x ∈ H , the mapping Tr : H → C (i.e., the resolvent of Θ and h) has the
following properties:

(i) Trx = ∅;
(ii) Trx is a singleton;

(iii) Tr is firmly nonexpansive;
(iv) GMEP(Θ , h) = Fix(Tr) and it is closed and convex.

Lemma . (see []) Let us suppose that (θ)-(θ), (h)-(h), and (H) hold. Let x, y ∈ H ,
r, r > . Then

‖Tr y – Tr x‖ ≤ ‖y – x‖ +
∣∣∣∣
r – r

r

∣∣∣∣‖Tr y – y‖.

Lemma . (see []) Suppose that the hypotheses of Lemma . are satisfied. Let {rn} be
a sequence in (,∞) with lim infn→∞ rn > . Suppose that {xn} is a bounded sequence. Then
the following statements are equivalent and true:

(a) If ‖xn – Trn xn‖ →  as n → ∞, each weak cluster point of {xn} satisfies the problem

Θ(x, y) + h(x, y) ≥ , ∀y ∈ C,

i.e., ωw(xn) ⊆ GMEP(Θ , h).
(b) The demiclosedness principle holds in the sense that, if xn ⇀ x∗ and

‖xn – Trn xn‖ →  as n → ∞, then (I – Trk )x∗ =  for all k ≥ .

Finally, recall that a set-valued mapping T̃ : H → H is called monotone if for all x, y ∈ H ,
f ∈ T̃x and g ∈ T̃y imply 〈x – y, f – g〉 ≥ . A monotone mapping T̃ : H → H is maximal if
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its graph G(T̃) is not properly contained in the graph of any other monotone mapping. It
is well known that a monotone mapping T̃ is maximal if and only if for (x, f ) ∈ H × H , 〈x –
y, f – g〉 ≥  for all (y, g) ∈ G(T̃) implies f ∈ T̃x. Let A : C → H be a monotone, L-Lipschitz
continuous mapping and let NCv be the normal cone to C at v ∈ C, i.e., NCv = {w ∈ H :
〈v – u, w〉 ≥ ,∀u ∈ C}. Define

T̃v =

{
Av + NCv, if v ∈ C,
∅, if v /∈ C.

It is well known [] that in this case T̃ is maximal monotone, and

 ∈ T̃v ⇔ v ∈ VI(C, A). (.)

3 Main results
Let M, N ≥  be two integers and let us consider the following new composite viscosity
iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)WnΛ

M
n yn,N ,

xn+ = ( – βn)yn + βnWnΛ
M
n yn, ∀n ≥ ,

(.)

where
the mapping f : C → C is an ρ-contraction;
Ak : C → H is ηk-inverse strongly monotone for each k = , . . . , M;
Si, Tn : C → C are nonexpansive mappings for each i = , . . . , N and n = , , . . . ;
{λn} is a sequence in (, b] for some b ∈ (, ) and Wn is the W -mapping defined by
(.);
Θ , h : C × C → R are two bi-functions satisfying the hypotheses of Lemma .;
{λk,n} ⊂ [ak , bk] ⊂ (, ηk), ∀k ∈ {, . . . , M}, and
ΛM

n := PC(I – λM,nAM) · · ·PC(I – λ,nA);
{αn}, {βn} are sequences in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
{βn,i}N

i= are sequences in (, ) and {rn} is a sequence in (,∞) with lim infn→∞ rn > .

Lemma . Let us suppose that Ω =
⋂∞

n= Fix(Tn) ∩ ⋂N
i= Fix(Si) ∩ ⋂M

k= VI(C, Ak) ∩
GMEP(Θ , h) = ∅. Then the sequences {xn}, {yn}, {yn,i} for all i, {un} are bounded.

Proof Put ỹn,N = ΛM
n yn,N , ỹn = ΛM

n yn, and

Λk
n = PC(I – λk,nAk)PC(I – λk–,nAk–) · · ·PC(I – λ,nA)

for all k ∈ {, . . . , M} and n ≥ , and Λ
n = I , where I is the identity mapping on H .

Let us observe, first of all that, if p ∈ Ω , then

‖yn, – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖.
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For all from i =  to i = N , by induction, one proves that

‖yn,i – p‖ ≤ βn,i‖un – p‖ + ( – βn,i)‖yn,i– – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖.

Thus we obtain, for every i = , . . . , N ,

‖yn,i – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

Since for each k ∈ {, . . . , M}, I – λk,nAk is nonexpansive and p = PC(I – λk,nAk)p (due to
Lemma .), we have

‖ỹn,N – p‖ =
∥∥PC(I – λM,nAM)ΛM–

n yn,N – PC(I – λM,nAM)ΛM–
n p

∥∥

≤ ∥∥(I – λM,nAM)ΛM–
n yn,N – (I – λM,nAM)ΛM–

n p
∥∥

≤ ∥∥ΛM–
n yn,N – ΛM–

n p
∥∥

· · ·
≤ ∥∥Λ

nyn,N – Λ
np

∥∥

= ‖yn,N – p‖ (.)

and

‖ỹn – p‖ =
∥∥PC(I – λM,nAM)ΛM–

n yn – PC(I – λM,nAM)ΛM–
n p

∥∥

≤ ∥∥(I – λM,nAM)ΛM–
n yn – (I – λM,nAM)ΛM–

n p
∥∥

≤ ∥∥ΛM–
n yn – ΛM–

n p
∥∥

· · ·
≤ ∥∥Λ

nyn – Λ
np

∥∥

= ‖yn – p‖. (.)

Since Wn is nonexpansive and p = Wnp for all n ≥ , we get from (.)-(.)

‖yn – p‖ =
∥∥αn

(
f (yn,N ) – p

)
+ ( – αn)(Wnỹn,N – p)

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ( – αn)‖ỹn,N – p‖
≤ αn

∥∥f (yn,N ) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)‖yn,N – p‖

≤ αnρ‖yn,N – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖yn,N – p‖
=
(
 – ( – ρ)αn

)‖yn,N – p‖ + αn
∥∥f (p) – p

∥∥

≤ (
 – ( – ρ)αn

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥

=
(
 – ( – ρ)αn

)‖xn – p‖ + ( – ρ)αn
‖f (p) – p‖

 – ρ

≤ max

{
‖xn – p‖,

‖f (p) – p‖
 – ρ

}
,
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and hence

‖xn+ – p‖ =
∥∥( – βn)(yn – p) + βn(Wnỹn – p)

∥∥

≤ ( – βn)‖yn – p‖ + βn‖ỹn – p‖
≤ ( – βn)‖yn – p‖ + βn‖yn – p‖
= ‖yn – p‖

≤ max

{
‖xn – p‖,

‖f (p) – p‖
 – ρ

}
.

By induction, we get

‖xn – p‖ ≤ max

{
‖x – p‖,

‖f (p) – p‖
 – ρ

}
, ∀n ≥ .

This implies that {xn} is bounded and so are {un}, {ỹn}, {ỹn,N }, {yn}, {yn,i} for each i =
, . . . , N . Since ‖Wnỹn,N – p‖ ≤ ‖yn,N – p‖ ≤ ‖xn – p‖ and ‖Wnỹn – p‖ ≤ ‖yn – p‖, {Wnỹn,N }
and {Wnỹn} are also bounded. �

Lemma . Let us suppose that Ω = ∅. Moreover, let us suppose that the following hold:
(H) limn→∞ αn =  and

∑∞
n= αn = ∞;

(H)
∑∞

n= |αn – αn–| < ∞ or limn→∞ |αn–αn–|
αn

= ;
(H)

∑∞
n= |βn,i – βn–,i| < ∞ or limn→∞

|βn,i–βn–,i|
αn

=  for each i = , . . . , N ;
(H)

∑∞
n= |rn – rn–| < ∞ or limn→∞ |rn–rn–|

αn
= ;

(H)
∑∞

n= |βn – βn–| < ∞ or limn→∞ |βn–βn–|
αn

= ;
(H)

∑∞
n= |λk,n – λk,n–| < ∞ or limn→∞

|λk,n–λk,n–|
αn

=  for each k = , . . . , M.
Then limn→∞ ‖xn+ – xn‖ = , i.e., {xn} is asymptotically regular.

Proof From (.), we have

{
yn = αnf (yn,N ) + ( – αn)Wnỹn,N ,
yn– = αn–f (yn–,N ) + ( – αn–)Wn–ỹn–,N .

Simple calculations show that

yn – yn– = ( – αn)(Wnỹn,N – Wn–ỹn–,N ) + (αn – αn–)
(
f (yn–,N ) – Wn–ỹn–,N

)

+ αn
(
f (yn,N ) – f (yn–,N )

)
. (.)

Note that

‖ỹn,N – ỹn–,N‖ =
∥∥ΛM

n yn,N – ΛM
n–yn–,N

∥∥

=
∥∥PC(I – λM,nAM)ΛM–

n yn,N – PC(I – λM,n–AM)ΛM–
n– yn–,N

∥∥

≤ ∥∥PC(I – λM,nAM)ΛM–
n yn,N – PC(I – λM,n–AM)ΛM–

n yn,N
∥∥

+
∥∥PC(I – λM,n–AM)ΛM–

n yn,N – PC(I – λM,n–AM)ΛM–
n– yn–,N

∥∥

≤ ∥∥(I – λM,nAM)ΛM–
n yn,N – (I – λM,n–AM)ΛM–

n yn,N
∥∥
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+
∥∥(I – λM,n–AM)ΛM–

n yn,N – (I – λM,n–AM)ΛM–
n– yn–,N

∥∥

≤ |λM,n – λM,n–|
∥∥AMΛM–

n yn,N
∥∥ +

∥∥ΛM–
n yn,N – ΛM–

n– yn–,N
∥∥

≤ |λM,n – λM,n–|
∥∥AMΛM–

n yn,N
∥∥ + |λM–,n – λM–,n–|

∥∥AM–Λ
M–
n yn,N

∥∥

+
∥∥ΛM–

n yn,N – ΛM–
n– yn–,N

∥∥

≤ · · ·
≤ |λM,n – λM,n–|

∥∥AMΛM–
n yn,N

∥∥ + |λM–,n – λM–,n–|
∥∥AM–Λ

M–
n yn,N

∥∥

+ · · · + |λ,n – λ,n–|
∥∥AΛ


nyn,N

∥∥ +
∥∥Λ

nyn,N – Λ
n–yn–,N

∥∥

≤ M̃

M∑

k=

|λk,n – λk,n–| + ‖yn,N – yn–,N‖ (.)

and

‖ỹn – ỹn–‖ =
∥∥ΛM

n yn – ΛM
n–yn–

∥∥

=
∥∥PC(I – λM,nAM)ΛM–

n yn – PC(I – λM,n–AM)ΛM–
n– yn–

∥∥

≤ ∥∥PC(I – λM,nAM)ΛM–
n yn – PC(I – λM,n–AM)ΛM–

n yn
∥∥

+
∥∥PC(I – λM,n–AM)ΛM–

n yn – PC(I – λM,n–AM)ΛM–
n– yn–

∥∥

≤ ∥∥(I – λM,nAM)ΛM–
n yn – (I – λM,n–AM)ΛM–

n yn
∥∥

+
∥∥(I – λM,n–AM)ΛM–

n yn – (I – λM,n–AM)ΛM–
n– yn–

∥∥

≤ |λM,n – λM,n–|
∥∥AMΛM–

n yn
∥∥ +

∥∥ΛM–
n yn – ΛM–

n– yn–
∥∥

≤ |λM,n – λM,n–|
∥∥AMΛM–

n yn
∥∥ + |λM–,n – λM,n–|

∥∥AM–Λ
M–
n yn

∥∥

+
∥∥ΛM–

n yn – ΛM–
n– yn–

∥∥

· · ·
≤ |λM,n – λM,n–|

∥∥AMΛM–
n yn

∥∥ + |λM–,n – λM–,n–|
∥∥AM–Λ

M–
n yn

∥∥

+ · · · + |λ,n – λ,n–|
∥∥AΛ


nyn

∥∥ +
∥∥Λ

nyn – Λ
n–yn–

∥∥

≤ M̃

M∑

k=

|λk,n – λk,n–| + ‖yn – yn–‖, (.)

where supn≥{
∑M

k= ‖AkΛ
k–
n yn,N‖} ≤ M̃ and supn≥{

∑M
k= ‖AkΛ

k–
n yn‖} ≤ M̃ for some

M̃ > .
Also, from (.), since Wn, Tn, and Un,i are all nonexpansive, we have

‖Wnỹn–,N – Wn–ỹn–,N‖ = ‖λTUn,ỹn–,N – λTUn–,ỹn–,N‖
≤ λ‖Un,ỹn–,N – Un–,ỹn–,N‖
= λ‖λTUn,ỹn–,N – λTUn–,ỹn–,N‖
≤ λλ‖Un,ỹn–,N – Un–,ỹn–,N‖
≤ · · ·
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≤ λλ · · ·λn–‖Un,nỹn–,N – Un–,nỹn–,N‖

≤ M̂
n–∏

i=

λi (.)

and

‖Wnỹn– – Wn–ỹn–‖ = ‖λTUn,ỹn– – λTUn–,ỹn–‖
≤ λ‖Un,ỹn– – Un–,ỹn–‖
= λ‖λTUn,ỹn– – λTUn–,ỹn–‖
≤ λλ‖Un,ỹn– – Un,ỹn–‖
≤ · · ·
≤ λλ · · ·λn–‖Un,nỹn– – Un–,nỹn–‖

≤ M̂
n–∏

i=

λi, (.)

where supn≥{‖Un+,n+ỹn,N‖ + ‖Un,n+ỹn,N‖} ≤ M̂ and supn≥{‖Un+,n+ỹn‖ + ‖Un,n+ỹn‖} ≤
M̂ for some M̂ > . Combining (.), (.), and (.), we get from {λn} ⊂ (, b] ⊂ (, ),

‖yn – yn–‖
≤ ( – αn)‖Wnỹn,N – Wn–ỹn–,N‖ + |αn – αn–|

∥∥f (yn–,N ) – Wn–ỹn–,N
∥∥

+ αn
∥∥f (yn,N ) – f (yn–,N )

∥∥

≤ ( – αn)
[‖Wnỹn,N – Wnỹn–,N‖ + ‖Wnỹn–,N – Wn–ỹn–,N‖]

+ |αn – αn–|
∥∥f (yn–,N ) – Wn–ỹn–,N

∥∥ + αnρ‖yn,N – yn–,N‖
≤ ( – αn)

[‖ỹn,N – ỹn–,N‖ + ‖Wnỹn–,N – Wn–ỹn–,N‖]

+ |αn – αn–|
∥∥f (yn–,N ) – Wn–ỹn–,N

∥∥ + αnρ‖yn,N – yn–,N‖

≤ ( – αn)

[

M̃

M∑

k=

|λk,n – λk,n–| + ‖yn,N – yn–,N‖ + M̂
n–∏

i=

λi

]

+ |αn – αn–|
∥∥f (yn–,N ) – Wn–ỹn–,N

∥∥ + αnρ‖yn,N – yn–,N‖

≤ (
 – αn( – ρ)

)‖yn,N – yn–,N‖ + M̃

M∑

k=

|λk,n – λk,n–|

+ |αn – αn–|
∥∥f (yn–,N ) – Wn–ỹn–,N

∥∥ + M̂
n–∏

i=

λi. (.)

Furthermore, from (.) we have
{

xn+ = ( – βn)yn + βnWnỹn,
xn = ( – βn–)yn– + βn–Wn–ỹn–.

Simple calculations show that

xn+ –xn = (–βn)(yn –yn–)+βn(Wnỹn –Wn–ỹn–)+(βn –βn–)(Wn–ỹn– –yn–). (.)
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Combining (.) and (.)-(.), we get from {λn} ⊂ (, b] ⊂ (, ),

‖xn+ – xn‖
≤ ( – βn)‖yn – yn–‖ + βn‖Wnỹn – Wn–ỹn–‖ + |βn – βn–|‖Wn–ỹn– – yn–‖
≤ ( – βn)‖yn – yn–‖ + βn

[‖Wnỹn – Wnỹn–‖ + ‖Wnỹn– – Wn–ỹn–‖
]

+ |βn – βn–|‖Wn–ỹn– – yn–‖
≤ ( – βn)‖yn – yn–‖ + βn

[‖ỹn – ỹn–‖ + ‖Wnỹn– – Wn–ỹn–‖
]

+ |βn – βn–|‖Wn–ỹn– – yn–‖

≤ ( – βn)‖yn – yn–‖ + βn

[

M̃

M∑

k=

|λk,n – λk,n–| + ‖yn – yn–‖ + M̂
n–∏

i=

λi

]

+ |βn – βn–|‖Wn–ỹn– – yn–‖

≤ ‖yn – yn–‖ + M̃

M∑

k=

|λk,n – λk,n–| + |βn – βn–|‖Wn–ỹn– – yn–‖ + M̂
n–∏

i=

λi

≤ (
 – αn( – ρ)

)‖yn,N – yn–,N‖ + M̃

M∑

k=

|λk,n – λk,n–|

+ |αn – αn–|
∥∥f (yn–,N ) – Wn–ỹn–,N

∥∥ + M̂
n–∏

i=

λi

+ M̃

M∑

k=

|λk,n – λk,n–| + |βn – βn–|‖Wn–ỹn– – yn–‖ + M̂
n–∏

i=

λi

≤ (
 – αn( – ρ)

)‖yn,N – yn–,N‖ + M̃

[ M∑

k=

|λk,n – λk,n–| + |αn – αn–|

+ |βn – βn–| + bn–

]

, (.)

where supn≥{‖f (yn,N ) – Wnỹn,N‖ + ‖Wnỹn – yn‖ + M̂ + M̃} ≤ M̃ for some M̃ > .
In the meantime, by the definition of yn,i one obtains, for all i = N , . . . , ,

‖yn,i – yn–,i‖ ≤ βn,i‖un – un–‖ + ‖Siun– – yn–,i–‖|βn,i – βn–,i|
+ ( – βn,i)‖yn,i– – yn–,i–‖. (.)

In the case i = , we have

‖yn, – yn–,‖ ≤ βn,‖un – un–‖ + ‖Sun– – un–‖|βn, – βn–,| + ( – βn,)‖un – un–‖
= ‖un – un–‖ + ‖Sun– – un–‖|βn, – βn–,|. (.)

Substituting (.) in all (.)-type one obtains, for i = , . . . , N ,

‖yn,i – yn–,i‖ ≤ ‖un – un–‖ +
i∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|.
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This together with (.) implies that

‖xn+ – xn‖

≤ (
 – αn( – ρ)

)‖yn,N – yn–,N‖ + M̃

[ M∑

k=

|λk,n – λk,n–| + |αn – αn–|

+ |βn – βn–| + bn–

]

≤ (
 – αn( – ρ)

)
[

‖un – un–‖ +
N∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|
]

+ M̃

[ M∑

k=

|λk,n – λk,n–|

+ |αn – αn–| + |βn – βn–| + bn–

]

≤ (
 – αn( – ρ)

)‖un – un–‖ +
N∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,| + M̃

[ M∑

k=

|λk,n – λk,n–|

+ |αn – αn–| + |βn – βn–| + bn–

]

. (.)

By Lemma ., we know that

‖un – un–‖ ≤ ‖xn – xn–‖ + L
∣∣∣∣ –

rn–

rn

∣∣∣∣, (.)

where L = supn≥ ‖un – xn‖. So, substituting (.) in (.) we obtain

‖xn+ – xn‖

≤ (
 – αn( – ρ)

)(‖xn – xn–‖ + L
∣∣∣∣ –

rn–

rn

∣∣∣∣

)
+

N∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,| + M̃

[ M∑

k=

|λk,n – λk,n–|

+ |αn – αn–| + |βn – βn–| + bn–

]

≤ (
 – αn( – ρ)

)‖xn – xn–‖ + L
∣∣∣∣ –

rn–

rn

∣∣∣∣ +
N∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,| + M̃

[ M∑

k=

|λk,n – λk,n–|
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+ |αn – αn–| + |βn – βn–|
]

+ M̃bn–

≤ (
 – αn( – ρ)

)‖xn – xn–‖ + M̃

[
|rn – rn–|

rn
+

N∑

k=

|βn,k – βn–,k|

+ |βn, – βn–,| +
M∑

k=

|λk,n – λk,n–| + |αn – αn–| + |βn – βn–|
]

+ M̃bn–

≤ (
 – αn( – ρ)

)‖xn – xn–‖ + M̃

[
|rn – rn–|

γ
+

N∑

k=

|βn,k – βn–,k|

+
M∑

k=

|λk,n – λk,n–| + |αn – αn–| + |βn – βn–|
]

+ M̃bn–, (.)

where γ >  is a minorant for {rn} and supn≥{L+M̃ +
∑N

k= ‖Skun –yn,k–‖+‖Sun –un‖} ≤
M̃ for some M̃ > . By hypotheses (H)-(H) and Lemma ., we obtain the claim. �

Lemma . Let us suppose that Ω = ∅. Let us suppose that {xn} is asymptotically regular.
Then ‖xn – yn‖ → , ‖yn – Wyn‖ → , and ‖xn – un‖ = ‖xn – Trn xn‖ →  as n → ∞.

Proof Taking into account  < lim infn→∞ βn ≤ lim supn→∞ βn <  we may assume, without
loss of generality, that {βn} ⊂ [c, d] ⊂ (, ). Let p ∈ Ω . Then from (.) and (.) it follows
that, for all k ∈ {, , . . . , M},

‖ỹn,N – p‖ =
∥∥ΛM

n yn,N – p
∥∥

≤ ∥∥Λk
nyn,N – p

∥∥

=
∥∥PC(I – λk,nAk)Λk–

n yn,N – PC(I – λk,nAk)p
∥∥

≤ ∥∥(I – λk,nAk)Λk–
n yn,N – (I – λk,nAk)p

∥∥

≤ ∥∥Λk–
n yn,N – p

∥∥ + λk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn,N – Akp

∥∥

≤ ‖yn,N – p‖ + λk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn,N – Akp

∥∥. (.)

Similarly, we have

‖ỹn – p‖ =
∥∥ΛM

n yn – p
∥∥

≤ ‖yn – p‖ + λk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn – Akp

∥∥. (.)

So, utilizing the convexity of ‖ · ‖, we get from (.)-(.) and (.)-(.)

‖yn – p‖ =
∥∥αn

(
f (yn,N ) – p

)
+ ( – αn)

(
WnΛ

M
n yn,N – p

)∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ( – αn)
∥∥WnΛ

M
n yn,N – p

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ +
∥∥ΛM

n yn,N – p
∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖yn,N – p‖ + λk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn,N – Akp

∥∥,
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and hence

‖xn+ – p‖ =
∥∥( – βn)(yn – p) + βn

(
WnΛ

M
n yn – p

)∥∥

≤ ( – βn)‖yn – p‖ + βn
∥∥WnΛ

M
n yn – p

∥∥

≤ ( – βn)‖yn – p‖ + βn
∥∥ΛM

n yn – p
∥∥

≤ ( – βn)‖yn – p‖ + βn
[‖yn – p‖ + λk,n(λk,n – ηk)

∥∥AkΛ
k–
n yn – Akp

∥∥]

= ‖yn – p‖ + βnλk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn – Akp

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖yn,N – p‖ + λk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn,N – Akp

∥∥

+ βnλk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn – Akp

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ + λk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn,N – Akp

∥∥

+ βnλk,n(λk,n – ηk)
∥∥AkΛ

k–
n yn – Akp

∥∥.

This together with {λk,n} ⊂ [ak , bk] ⊂ (, ηk), k = , . . . , M, implies that

ak(ηk – bk)
∥∥AkΛ

k–
n yn,N – Akp

∥∥ + cak(ηk – bk)
∥∥AkΛ

k–
n yn – Akp

∥∥

≤ λk,n(ηk – λk,n)
∥∥AkΛ

k–
n yn,N – Akp

∥∥ + βnλk,n(ηk – λk,n)
∥∥AkΛ

k–
n yn – Akp

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖).

Since αn →  and ‖xn+ – xn‖ →  as n → ∞, from the boundedness of {xn} and {yn,N } we
get

lim
n→∞

∥∥AkΛ
k–
n yn,N – Akp

∥∥ =  and lim
n→∞

∥∥AkΛ
k–
n yn – Akp

∥∥ = . (.)

We recall that, by the firm nonexpansivity of Trn , a standard calculation (see []) shows
that for p ∈ GMEP(Θ , h),

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖.

By Proposition .(iii), we deduce that, for each k ∈ {, , . . . , M},

∥∥Λk
nyn,N – p

∥∥

=
∥∥PC(I – λk,nAk)Λk–

n yn,N – PC(I – λk,nAk)p
∥∥

≤ 〈
(I – λk,nAk)Λk–

n yn,N – (I – λk,nAk)p,Λk
nyn,N – p

〉

=


(∥∥(I – λk,nAk)Λk–

n yn,N – (I – λk,nAk)p
∥∥ +

∥∥Λk
nyn,N – p

∥∥

–
∥∥(I – λk,nAk)Λk–

n yn,N – (I – λk,nAk)p –
(
Λk

nyn,N – p
)∥∥)

≤ 

(∥∥Λk–

n yn,N – p
∥∥ +

∥∥Λk
nyn,N – p

∥∥

–
∥∥Λk–

n yn,N – Λk
nyn,N – λk,n

(
AkΛ

k–
n yn,N – Akp

)∥∥)
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≤ 

(‖yn,N – p‖ +

∥∥Λk
nyn,N – p

∥∥

–
∥∥Λk–

n yn,N – Λk
nyn,N – λk,n

(
AkΛ

k–
n yn,N – Akp

)∥∥),

which implies

∥∥Λk
nyn,N – p

∥∥ ≤ ‖yn,N – p‖ –
∥∥Λk–

n yn,N – Λk
nyn,N – λk,n

(
AkΛ

k–
n yn,N – Akp

)∥∥

= ‖yn,N – p‖ –
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥ – λ
k,n

∥∥AkΛ
k–
n yn,N – Akp

∥∥

+ λk,n
〈
Λk–

n yn,N – Λk
nyn,N , AkΛ

k–
n yn,N – Akp

〉

≤ ‖yn,N – p‖ –
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥

+ λk,n
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥. (.)

Similarly, we have

∥∥Λk
nyn – p

∥∥ ≤ ‖yn – p‖ –
∥∥Λk–

n yn – Λk
nyn

∥∥

+ λk,n
∥∥Λk–

n yn – Λk
nyn

∥∥∥∥AkΛ
k–
n yn – Akp

∥∥. (.)

Thus, by Lemma .(b), we get from (.)-(.) and (.)-(.)

‖yn – p‖ ≤ αn
∥∥f (yn,N ) – p

∥∥ + ( – αn)
∥∥WnΛ

M
n yn,N – p

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ +
∥∥ΛM

n yn,N – p
∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ +
∥∥Λk

nyn,N – p
∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖yn,N – p‖ –
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥

+ λk,n
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖un – p‖ –
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥

+ λk,n
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – ‖xn – un‖ –
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥

+ λk,n
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥,

and hence

‖xn+ – p‖

= ( – βn)‖yn – p‖ + βn
∥∥WnΛ

M
n yn – p

∥∥ – βn( – βn)
∥∥yn – WnΛ

M
n yn

∥∥

≤ ( – βn)‖yn – p‖ + βn
∥∥ΛM

n yn – p
∥∥ – βn( – βn)

∥∥yn – WnΛ
M
n yn

∥∥

≤ ( – βn)‖yn – p‖ + βn
∥∥Λk

nyn – p
∥∥ – βn( – βn)

∥∥yn – WnΛ
M
n yn

∥∥

≤ ( – βn)‖yn – p‖ + βn
[‖yn – p‖ –

∥∥Λk–
n yn – Λk

nyn
∥∥

+ λk,n
∥∥Λk–

n yn – Λk
nyn

∥∥∥∥AkΛ
k–
n yn – Akp

∥∥] – βn( – βn)
∥∥yn – WnΛ

M
n yn

∥∥

≤ ‖yn – p‖ – βn
∥∥Λk–

n yn – Λk
nyn

∥∥

+ λk,n
∥∥Λk–

n yn – Λk
nyn

∥∥∥∥AkΛ
k–
n yn – Akp

∥∥ – βn( – βn)
∥∥yn – WnΛ

M
n yn

∥∥



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:217 Page 19 of 34

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – ‖xn – un‖ –
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥

+ λk,n
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥ – βn
∥∥Λk–

n yn – Λk
nyn

∥∥

+ λk,n
∥∥Λk–

n yn – Λk
nyn

∥∥∥∥AkΛ
k–
n yn – Akp

∥∥ – βn( – βn)
∥∥yn – WnΛ

M
n yn

∥∥.

This together with {λk,n} ⊂ [ak , bk] ⊂ (, ηk), k = , . . . , M, implies that

‖xn – un‖ +
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥ + c
∥∥Λk–

n yn – Λk
nyn

∥∥

+ c( – d)
∥∥yn – WnΛ

M
n yn

∥∥

≤ ‖xn – un‖ +
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥ + βn
∥∥Λk–

n yn – Λk
nyn

∥∥

+ βn( – βn)
∥∥yn – WnΛ

M
n yn

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

+ λk,n
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥

+ λk,n
∥∥Λk–

n yn – Λk
nyn

∥∥∥∥AkΛ
k–
n yn – Akp

∥∥

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖)

+ bk
∥∥Λk–

n yn,N – Λk
nyn,N

∥∥∥∥AkΛ
k–
n yn,N – Akp

∥∥

+ bk
∥∥Λk–

n yn – Λk
nyn

∥∥∥∥AkΛ
k–
n yn – Akp

∥∥. (.)

Since αn →  and ‖xn+ – xn‖ →  as n → ∞, and {xn}, {yn}, and {yn,N } are bounded, from
(.) and (.) we conclude that

lim
n→∞‖xn – un‖ = lim

n→∞
∥∥yn – WnΛ

M
n yn

∥∥ =  (.)

and

lim
n→∞

∥∥Λk–
n yn,N – Λk

nyn,N
∥∥ = lim

n→∞
∥∥Λk–

n yn – Λk
nyn

∥∥ =  (.)

for all k ∈ {, . . . , M}. Therefore we get

‖yn,N – ỹn,N‖ =
∥∥Λ

nyn,N – ΛM
n yn,N

∥∥

≤ ∥∥Λ
nyn,N – Λ

nyn,N
∥∥ +

∥∥Λ
nyn,N – Λ

nyn,N
∥∥

+ · · · +
∥∥ΛM–

n yn,N – ΛM
n yn,N

∥∥

→  as n → ∞ (.)

and

‖yn – ỹn‖ =
∥∥Λ

nyn – ΛM
n yn

∥∥

≤ ∥∥Λ
nyn – Λ

nyn
∥∥ +

∥∥Λ
nyn – Λ

nyn
∥∥ + · · · +

∥∥ΛM–
n yn – ΛM

n yn
∥∥

→  as n → ∞. (.)
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We note that ‖xn+ – yn‖ = βn‖WnΛ
M
n yn – yn‖ →  as n → ∞. This, together with ‖xn+ –

xn‖ → , implies that

lim
n→∞‖xn – yn‖ = . (.)

In addition, observe that

‖Wnyn – yn‖ ≤ ∥∥Wnyn – WnΛ
M
n yn

∥∥ +
∥∥WnΛ

M
n yn – yn

∥∥

≤ ∥∥yn – ΛM
n yn

∥∥ +
∥∥WnΛ

M
n yn – yn

∥∥.

Hence from (.) and (.) it follows that

lim
n→∞‖Wnyn – yn‖ = .

Utilizing the boundedness of {yn} and Remark ., we conclude that

‖Wyn – yn‖ ≤ ‖Wyn – Wnyn‖ + ‖Wnyn – yn‖
→  as n → ∞. (.)

�

Remark . By the last lemma we have ωw(xn) = ωw(un) and ωs(xn) = ωs(un), i.e., the sets
of strong/weak cluster points of {xn} and {un} coincide.

Of course, if βn,i → βi =  as n → ∞, for all indices i, the assumptions of Lemma . are
enough to assure that

lim
n→∞

‖xn+ – xn‖
βn,i

= , ∀i ∈ {, . . . , N}.

In the next lemma, we estimate the case in which at least one sequence {βn,k} is a null
sequence.

Lemma . Let us suppose that Ω = ∅. Let us suppose that (H) holds. Moreover, for an
index k ∈ {, . . . , N}, limn→∞ βn,k = , and the following hold:

(H) for each i ∈ {, . . . , N} and k ∈ {, . . . , M},

lim
n→∞

|βn,i – βn–,i|
αnβn,k

= lim
n→∞

|αn – αn–|
αnβn,k

= lim
n→∞

|βn – βn–|
αnβn,k

= lim
n→∞

|rn – rn–|
αnβn,k

= lim
n→∞

bn

αnβn,k
= lim

n→∞
|λk,n – λk,n–|

αnβn,k
= ;

(H) there exists a constant τ >  such that 
αn

| 
βn,k

– 
βn–,k

| < τ for all n ≥ .
Then

lim
n→∞

‖xn+ – xn‖
βn,k

.
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Proof We start by (.). Dividing both terms by βn,k we have

‖xn+ – xn‖
βn,k

≤ [
 – αn( – ρ)

]‖xn – xn–‖
βn–,k

+
[
 – αn( – ρ)

]‖xn – xn–‖
∣∣∣∣


βn,k

–


βn–,k

∣∣∣∣

+ M̃

[
|rn – rn–|

γβn,k
+

N∑

k=

|βn,k – βn–,k|
βn,k

+
M∑

k=

|λk,n – λk,n–|
βn,k

+
|αn – αn–|

βn,k
+

|βn – βn–|
βn,k

+
bn–

βn,k

]

≤ [
 – αn( – ρ)

]‖xn – xn–‖
βn–,k

+ ‖xn – xn–‖
∣∣∣∣


βn,k

–


βn–,k

∣∣∣∣

+ M̃

[
|rn – rn–|

γβn,k
+

N∑

k=

|βn,k – βn–,k|
βn,k

+
M∑

k=

|λk,n – λk,n–|
βn,k

+
|αn – αn–|

βn,k
+

|βn – βn–|
βn,k

+
bn

bβn,k

]

≤ [
 – αn( – ρ)

]‖xn – xn–‖
βn–,k

+ αnτ‖xn – xn–‖

+ M̃

[
|rn – rn–|

γβn,k
+

N∑

k=

|βn,k – βn–,k|
βn,k

+
M∑

k=

|λk,n – λk,n–|
βn,k

+
|αn – αn–|

βn,k
+

|βn – βn–|
βn,k

+
bn

bβn,k

]

=
[
 – αn( – ρ)

]‖xn – xn–‖
βn–,k

+ αn( – ρ) · 
 – ρ

{

τ‖xn – xn–‖

+ M̃

[
|rn – rn–|
γαnβn,k

+
N∑

k=

|βn,k – βn–,k|
αnβn,k

+
M∑

k=

|λk,n – λk,n–|
αnβn,k

+
|αn – αn–|

αnβn,k
+

|βn – βn–|
αnβn,k

+
bn

bαnβn,k

]}

.

Therefore, utilizing Lemma ., from (H), (H), and the asymptotical regularity of {xn}
(due to Lemma .), we deduce that

lim
n→∞

‖xn+ – xn‖
βn,k

= . �

Lemma . Let us suppose that Ω = ∅. Let us suppose that  < lim infn→∞ βn,i ≤
lim supn→∞ βn,i <  for each i = , . . . , N . Moreover, suppose that (H)-(H) are satisfied.
Then limn→∞ ‖Siun – un‖ =  for each i = , . . . , N .

Proof First of all, by Lemma ., we know that {xn} is asymptotically regular, i.e.,
limn→∞ ‖xn+ – xn‖ = . Let us show that for each i ∈ {, . . . , N}, one has ‖Siun – yn,i–‖ → 
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as n → ∞. Let p ∈ Ω . When i = N , by Lemma .(b) we have from (.) and (.)

‖yn – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ( – αn)‖Wnỹn,N – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ( – αn)‖ỹn,N – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖yn,N – p‖

= αn
∥∥f (yn,N ) – p

∥∥ + βn,N‖SN un – p‖ + ( – βn,N )‖yn,N– – p‖

– βn,N ( – βn,N )‖SN un – yn,N–‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + βn,N‖un – p‖ + ( – βn,N )‖un – p‖

– βn,N ( – βn,N )‖SN un – yn,N–‖

= αn
∥∥f (yn,N ) – p

∥∥ + ‖un – p‖ – βn,N ( – βn,N )‖SN un – yn,N–‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – βn,N ( – βn,N )‖SN un – yn,N–‖.

So, we have

βn,N ( – βn,N )‖SN un – yn,N–‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – ‖yn – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

Since αn → ,  < lim infn→∞ βn,N ≤ lim supn→∞ βn,N <  and limn→∞ ‖xn – yn‖ =  (due to
(.)), and it is well known that {‖SN un – yn,N–‖} is a null sequence.

Let i ∈ {, . . . , N – }. Then one has

‖yn – p‖ ≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖yn,N – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + βn,N‖SN un – p‖ + ( – βn,N )‖yn,N– – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + βn,N‖xn – p‖ + ( – βn,N )‖yn,N– – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + βn,N‖xn – p‖

+ ( – βn,N )
[
βn,N–‖SN–un – p‖ + ( – βn,N–)‖yn,N– – p‖]

≤ αn
∥∥f (yn,N ) – p

∥∥ +
(
βn,N + ( – βn,N )βn,N–

)‖xn – p‖

+
N∏

k=N–

( – βn,k)‖yn,N– – p‖,

and so, after (N – i + )-iterations,

‖yn – p‖ ≤ αn
∥∥f (yn,N ) – p

∥∥ +

(

βn,N +
N∑

j=i+

( N∏

l=j

( – βn,l)

)

βn,j–

)

‖xn – p‖

+
N∏

k=i+

( – βn,k)‖yn,i – p‖
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≤ αn
∥∥f (yn,N ) – p

∥∥ +

(

βn,N +
N∑

j=i+

( N∏

l=j

( – βn,l)

)

βn,j–

)

‖xn – p‖

+
N∏

k=i+

( – βn,k)
[
βn,i‖Siun – p‖ + ( – βn,i)‖yn,i– – p‖

– βn,i( – βn,i)‖Siun – yn,i–‖]

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – βn,i

N∏

k=i

( – βn,k)‖Siun – yn,i–‖. (.)

Again we obtain

βn,i

N∏

k=i

( – βn,k)‖Siun – yn,i–‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – ‖yn – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

Since αn → ,  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i < , for each i = , . . . , N – , and
limn→∞ ‖xn – yn‖ =  (due to (.)), and it is well known that

lim
n→∞‖Siun – yn,i–‖ = .

Obviously for i = , we have ‖Sun – un‖ → .
To conclude, we have

‖Sun – un‖ ≤ ‖Sun – yn,‖ + ‖yn, – un‖ = ‖Sun – yn,‖ + βn,‖Sun – un‖

from which ‖Sun – un‖ → . Thus by induction ‖Siun – un‖ →  for all i = , . . . , N since
it is enough to observe that

‖Siun – un‖ ≤ ‖Siun – yn,i–‖ + ‖yn,i– – Si–un‖ + ‖Si–un – un‖
≤ ‖Siun – yn,i–‖ + ( – βn,i–)‖Si–un – yn,i–‖ + ‖Si–un – un‖. �

Remark . As an example, we consider M = , N = , and the sequences:
(a) λ,n = η – 

n , ∀n > 
η

;
(b) αn = √

n , rn =  – 
n , ∀n > ;

(c) βn = βn, = 
 – 

n , βn, = 
 – 

n , ∀n > .
Then they satisfy the hypotheses of Lemma ..

Lemma . Let us suppose that Ω = ∅ and βn,i → βi for all i as n → ∞. Suppose there
exists k ∈ {, . . . , N} such that βn,k →  as n → ∞. Let k ∈ {, . . . , N} be the largest index
such that βn,k →  as n → ∞. Suppose that

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i →  then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi =  then βi lies in (, ).



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:217 Page 24 of 34

Moreover, suppose that (H), (H), and (H) hold. Then limn→∞ ‖Siun – un‖ =  for each
i = , . . . , N .

Proof First of all we note that if (H) holds then also (H)-(H) are satisfied. So {xn} is
asymptotically regular.

Let k be as in the hypotheses. As in Lemma ., for every index i ∈ {, . . . , N} such that
βn,i → βi =  (which leads to  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i < ), one has ‖Siun –
yn,i–‖ →  as n → ∞.

For all the other indices i ≤ k, we can prove that ‖Siun – yn,i–‖ →  as n → ∞ in a
similar manner. By the relation (due to (.) and (.))

‖xn+ – p‖ =
∥∥( – βn)(yn – p) + βn

(
WnΛ

M
n yn – p

)∥∥

≤ ( – βn)‖yn – p‖ + βn
∥∥WnΛ

M
n yn – p

∥∥

≤ ‖yn – p‖

≤ αn
∥∥f (yn,N ) – p

∥∥ + ‖xn – p‖ – βn,i

N∏

k=i

( – βn,k)‖Siun – yn,i–‖,

we immediately obtain

N∏

k=i

(
 – βn,k‖Siun – yn,i–‖) ≤ αn

βn,i

∥∥f (yn,N ) – p
∥∥ +

‖xn – xn+‖
βn,i

(‖xn – p‖ + ‖xn+ – p‖).

By Lemma . or by hypothesis (ii) on the sequences, we have

‖xn – xn+‖
βn,i

=
‖xn – xn+‖

βn,k
· βn,k

βn,i
→ .

So, the conclusion follows. �

Remark . Let us consider M = , N = , and the following sequences:
(a) αn = 

n/ , rn =  – 
n , ∀n > ;

(b) λ,n = η – 
n , ∀n > 

η/


;

(c) βn, = 
n/ , βn = βn, = 

 – 
n , βn, = 

n/ , ∀n > .
It is easy to see that all hypotheses (i)-(iii), (H), (H), and (H) of Lemma . are satisfied.

Remark . Under the hypotheses of Lemma ., analogously to Lemma ., one can see
that

lim
n→∞‖Siun – yn,i–‖ = , ∀i ∈ {, . . . , N}.

Corollary . Let us suppose that the hypotheses of either Lemma . or Lemma . are
satisfied. Then ωw(xn) = ωw(un) = ωw(yn), ωs(xn) = ωs(un) = ωs(yn,), and ωw(xn) ⊂ Ω .

Proof By Remark ., we have ωw(xn) = ωw(un) and ωs(xn) = ωs(un). Note that by Re-
mark .,

lim
n→∞‖SN un – yn,N–‖ = .
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In the meantime, it is well known that

lim
n→∞‖SN un – un‖ = lim

n→∞‖un – xn‖ = lim
n→∞‖xn – yn‖ = .

Hence we have

lim
n→∞‖SN un – yn‖ = . (.)

Furthermore, it follows from (.) that

lim
n→∞‖yn,N – yn,N–‖ = lim

n→∞βn,N‖SN un – yn,N–‖ = ,

which, together with limn→∞ ‖SN un – yn,N–‖ = , yields

lim
n→∞‖SN un – yn,N‖ = . (.)

Combining (.) and (.), we conclude that

lim
n→∞‖yn – yn,N‖ = , (.)

which, together with limn→∞ ‖xn – yn‖ = , leads to

lim
n→∞‖xn – yn,N‖ = . (.)

Now we observe that

‖xn – yn,‖ ≤ ‖xn – un‖ + ‖yn, – un‖ = ‖xn – un‖ + βn,‖Sun – un‖.

By Lemmas . and ., ‖xn – un‖ →  and ‖Sun – un‖ →  as n → ∞, and we have

lim
n→∞‖xn – yn,‖ = .

So we get ωw(xn) = ωw(yn,) and ωs(xn) = ωs(yn,).
Let p ∈ ωw(xn). Since p ∈ ωw(un), by Lemma . and Lemma . (demiclosedness prin-

ciple), we have p ∈ Fix(Si) for each i = i, . . . , N , i.e., p ∈ ⋂N
i= Fix(Si). Also, since p ∈ ωw(yn)

(due to ‖xn – yn‖ → ), in terms of (.) and Lemma . (demiclosedness principle),
we get p ∈ Fix(W ) =

⋂∞
n= Fix(Tn) (due to Lemma .). Moreover, by Lemmas . and

. we know that p ∈ GMEP(Θ , h). Next we prove that p ∈ ⋂M
m= VI(C, Am). Indeed, since

p ∈ ωw(yn,N ) (due to (.)), there exists a subsequence {yni ,N } of {yn,N } such that yni ,N ⇀ p.
So, from (.) we know that Λm

ni
yni ,N ⇀ p for each m = , . . . , M. Let

T̃mv =

{
Amv + NCv, v ∈ C,
∅, v /∈ C,

where m ∈ {, , . . . , M}. Let (v, u) ∈ G(T̃m). Since u – Amv ∈ NCv and Λm
n yn,N ∈ C, we have

〈
v – Λm

n yn,N , u – Amv
〉 ≥ .
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On the other hand, from Λm
n yn,N = PC(I – λm,nAm)Λm–

n yn,N and v ∈ C, we have

〈
v – Λm

n yn,N ,Λm
n yn,N –

(
Λm–

n yn,N – λm,nAmΛm–
n yn,N

)〉 ≥ ,

and hence

〈
v – Λm

n yn,N ,
Λm

n yn,N – Λm–
n yn,N

λm,n
+ AmΛm–

n yn,N

〉
≥ .

Therefore we have

〈
v – Λm

ni
yni ,N , u

〉

≥ 〈
v – Λm

ni
yni ,N , Amv

〉

≥ 〈
v – Λm

ni
yni ,N , Amv

〉
–
〈
v – Λm

ni
yni ,N ,

Λm
ni

yni ,N – Λm–
ni

yni ,N

λm,ni

+ AmΛm–
ni

yni ,N

〉

=
〈
v – Λm

ni
yni ,N , Amv – AmΛm

ni
yni ,N

〉
+
〈
v – Λm

ni
yni ,N , AmΛm

ni
yni ,N – AmΛm–

ni
yni ,N

〉

–
〈
v – Λm

ni
yni ,N ,

Λm
ni

yni ,N – Λm–
ni

yni ,N

λm,ni

〉

≥ 〈
v – Λm

ni
yni ,N , AmΛm

ni
yni ,N – AmΛm–

ni
yni ,N

〉

–
〈
v – Λm

ni
yni ,N ,

Λm
ni

yni ,N – Λm–
ni

yni ,N

λm,ni

〉
.

From (.) and since Am is Lipschitz continuous, we obtain limn→∞ ‖AmΛm
n yn,N –

AmΛm–
n yn,N‖ = . From Λm

ni
yni ,N ⇀ p, {λm,n} ⊂ [am, bm] ⊂ (, ηm), ∀m ∈ {, , . . . , M}, and

(.), we have

〈v – p, u〉 ≥ .

Since T̃m is maximal monotone, we have p ∈ T̃–
m  and hence p ∈ VI(C, Am), m =

, , . . . , M, which implies p ∈ ⋂M
m= VI(C, Am). Consequently,

p ∈
∞⋂

n=

Fix(Tn) ∩
N⋂

i=

Fix(Si) ∩
M⋂

m=

VI(C, Am) ∩ GMEP(Θ , h) =: Ω . �

Theorem . Let us suppose that Ω = ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, )
such that  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for each index i. Moreover, let us sup-
pose that (H)-(H) hold. Then the sequences {xn}, {yn}, and {un}, explicitly defined by the
scheme

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)WnΛ

M
n yn,N ,

xn+ = ( – βn)yn + βnWnΛ
M
n yn, ∀n ≥ ,
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converge strongly to a unique solution x∗ in Ω of the following variational inequality prob-
lem (VIP):

〈
f
(
x∗) – x∗, z – x∗〉 ≤ , ∀z ∈ Ω . (.)

Proof Since the mapping PΩ f is a ρ-contraction, it has a unique fixed point x∗ ∈ H ; it is the
unique solution of VIP (.). Since (H)-(H) hold, the sequence {xn} is asymptotically
regular (according to Lemma .). By Lemma ., ‖xn – yn‖ →  and ‖xn – un‖ →  as
n → ∞. Moreover, utilizing Lemma . and the nonexpansivity of (I – λk,nAk), we get
from (.) and (.)

∥∥xn+ – x∗∥∥

=
∥∥( – βn)(yn – p) + βn

(
WnΛ

M
n yn – x∗)∥∥

≤ ( – βn)‖yn – p‖ + βn
∥∥WnΛ

M
n yn – x∗∥∥

≤ ∥∥yn – x∗∥∥

≤ ∥∥αn
(
f (yn,N ) – f

(
x∗)) + ( – αn)

(
WnΛ

M
n yn,N – x∗)∥∥ + αn

〈
f
(
x∗) – x∗, yn – x∗〉

≤ αnρ
∥∥yn,N – x∗∥∥ + ( – αn)

∥∥ΛM
n yn,N – x∗∥∥ + αn

〈
f
(
x∗) – x∗, yn – x∗〉

≤ αnρ
∥∥yn,N – x∗∥∥ + ( – αn)

∥∥yn,N – x∗∥∥ + αn
〈
f
(
x∗) – x∗, yn – x∗〉

=
[
 – ( – ρ)αn

]∥∥yn,N – x∗∥∥ + αn
〈
f
(
x∗) – x∗, yn – x∗〉

≤ [
 – ( – ρ)αn

]∥∥xn – x∗∥∥ + αn
〈
f
(
x∗) – x∗, yn – x∗〉

≤ [
 – ( – ρ)αn

]∥∥xn – x∗∥∥ + ( – ρ)αn · 
 – ρ

〈
f
(
x∗) – x∗, yn – x∗〉.

Now, let {xnk } be a subsequence of {xn} such that

lim sup
n→∞

〈
f
(
x∗) – x∗, xn – x∗〉 = lim

k→∞
〈
f
(
x∗) – x∗, xnk – x∗〉. (.)

By the boundedness of {xn}, we may assume, without loss of generality, that xnk ⇀ p ∈
ωw(xn). According to Corollary ., we know that ωw(xn) ⊂ Ω and hence p ∈ Ω . Taking
into consideration that x∗ = PΩ f (x∗) we obtain from (.)

lim sup
n→∞

〈
f
(
x∗) – x∗, yn – x∗〉

= lim sup
n→∞

[〈
f
(
x∗) – x∗, xn – x∗〉 +

〈
f
(
x∗) – x∗, yn – xn

〉]

= lim sup
n→∞

〈
f
(
x∗) – x∗, xn – x∗〉 = lim

k→∞
〈
f
(
x∗) – x∗, xnk – x∗〉

=
〈
f
(
x∗) – x∗, p – x∗〉 ≤ .

In terms of Lemma . we derive xn → x∗ as n → ∞. �

In the following, we provide a numerical example to illustrate how our main theorem,
Theorem ., works.
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Example Let H = R with inner product 〈·, ·〉 and norm ‖ · ‖ which are defined by

〈x, y〉 = ac + bd, ‖x‖ =
√

a + b

for all x, y ∈ R with x = (a, b) and y = (c, d). Let C = {(a, a) : a ∈ R}. Clearly, C is a nonempty,
closed, and convex subset of a real Hilbert space H = R. Let M = N = . Let f : C → C be
a ρ-contraction mapping, A, Ak : C → H be η-inverse strongly monotone and ηk-inverse
strongly monotone for each k = , , and let Si, Tn : C → C be nonexpansive mappings for
each i = ,  and n = , , . . . , for instance, putting

A = S =

{












}

, Tn = S =

{












}

,

f =



S, A = I – S =

{

 – 


– 





}

, A = I – S =

{

 – 


– 





}

.

Let Θ , h : C × C → R be bi-functions satisfying the hypotheses of Lemma ., for
instance, putting h(x, y) =  and Θ(x, y) = 〈Ax, y〉. It is easy to see that ‖f ‖ = 

 and
‖A‖ = ‖S‖ = ‖S‖ = ‖Tn‖ = , for each n = , , . . . , that f is a 

 -contraction mapping,
that A, A and A are 

 -inverse strongly monotone, and that Si and Tn both are non-
expansive for each i = ,  and n = , , . . . . Moreover, it is clear that

⋂
i= Fix(Si) = C,

⋂∞
n= Fix(Tn) = C,

⋂
m= VI(C, Am) = C ∩{} = {} and GMEP(Θ , h) = VI(C, A) = C. Hence,

Ω :=
⋂∞

n= Fix(Tn) ∩⋂
i= Fix(Si) ∩⋂

m= VI(C, Am) ∩ GMEP(Θ , h) = {}. In this case, from
scheme (.), we obtain, for any given x ∈ C,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Trn xn = PC(I – rnA)xn = xn,
yn, = βn,Sun + ( – βn,)un

= βn,Sxn + ( – βn,)xn

= xn,
yn, = βn,iSiun + ( – βn,i)yn,

= βn,iSixn + ( – βn,i)xn

= xn,
yn = αnf (yn,) + ( – αn)WnΛ


nyn,

= 
αnxn + ( – αn)WnPC(I – λ,nA)PC(I – λ,nA)xn

= 
αnxn + ( – αn)WnPC(I – λ,nA)( – λ,n)xn

= 
αnxn + ( – αn)Wn( – λ,n)xn

= 
αnxn + ( – αn)( – λ,n)xn

= [ 
αn + ( – αn)( – λ,n)]xn,

xn+ = ( – βn)yn + βnWnΛ

nyn

= ( – βn)yn + βnWnPC(I – λ,nA)PC(I – λ,nA)yn

= ( – βn)yn + βnWnPC(I – λ,nA)( – λ,n)yn

= ( – βn)yn + βnWn( – λ,n)yn

= ( – βn)yn + βn( – λ,n)yn

= [( – βn) + βn( – λ,n)]yn

= ( – βnλ,n)yn

= ( – βnλ,n)[ 
αn + ( – αn)( – λ,n)]xn.
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Whenever {αn}, {βn} ⊂ (, ) with
∑∞

n= αn = ∞ and {λk,n} ⊂ [ak , bk] ⊂ (, ηk) with ηk = 
 ,

k = , , we have

‖xn+‖ = ( – βnλ,n)
[



αn + ( – αn)( – λ,n)

]
‖xn‖

≤
[



αn + ( – αn)( – λ,n)

]
‖xn‖

≤
[



αn + ( – αn)

]
‖xn‖

=
(

 –


αn

)
‖xn‖

≤ exp

(
–



αn

)
‖xn‖

≤ · · ·

≤ exp

(

–



n∑

k=

αn

)

‖x‖ →  as n → ∞.

That is,

lim
n→∞‖xn‖ = .

This shows that {xn} converges to the unique element of Ω .

In a similar way, we can conclude to another theorem as follows.

Theorem . Let us suppose that Ω = ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, )
such that βn,i → βi for each index i as n → ∞. Suppose that there exists k ∈ {, . . . , N} for
which βn,k →  as n → ∞. Let k ∈ {, . . . , N} be the largest index for which βn,k → .
Moreover, let us suppose that (H), (H), and (H) hold and

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i → βi then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi =  then βi lies in (, ).

Then the sequences {xn}, {yn}, and {un} explicitly defined by scheme (.) all converge
strongly to the unique solution x∗ in Ω to the VIP

〈
f
(
x∗) – x∗, z – x∗〉 ≤ , ∀z ∈ Ω .

Remark . According to the above argument processes for Theorems . and ., we
can readily see that if in scheme (.), the iterative step yn = αnf (yn,N ) + ( – αn)WnΛ

M
n yn,N

is replaced by the iterative one yn = αnf (xn) + ( – αn)WnΛ
M
n yn,N , then Theorems . and

. remain valid.

Remark . Theorems . and . improve, extend, supplement, and develop Theorems
. and . of [] and Theorems . and . of [] in the following aspects.

(i) The multi-step iterative scheme (.) of [] is extended to develop our composite
viscosity iterative scheme (.) by virtue of Korpelevich’s extragradient method and
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the W -mapping approach to common fixed points of infinitely many nonexpansive
mappings. Our scheme (.) is more general and more advantageous than schemes
(.) and (.) because it solves three problems: GMEP (.), a finite family of
variational inequalities for inverse strongly monotone mappings Ak , k = , . . . , M,
and the fixed point problem of one finite family of nonexpansive mappings {Si}N

i=
and another infinite family of nonexpansive mappings {Tn}∞n=.

(ii) The argument techniques in our Theorems . and . are a combination and
development of those in Theorems . and . of [] and Theorems . and
. of [] because we make use of the properties of the resolvent operator
associated with Θ and h (see Lemmas .-.), the inclusion problem  ∈ T̃v
(⇔ v ∈ VI(C, A)) (see (.)), and the properties of the W -mappings Wn (see
Remarks . and . and Lemmas . and .).

(iii) The problem of finding an element of
⋂∞

n= Fix(Tn) ∩ ⋂N
i= Fix(Si) ∩

⋂M
k= VI(C, Ak) ∩ GMEP(Θ , h) in our Theorems . and . is more general and

more subtle than the one of finding an element of
Fix(T) ∩ ⋂N

i= Fix(Si) ∩ GMEP(Θ , h) in Theorems . and . of [] and the one
of finding an element of Fix(T) ∩ ⋂N

i= Fix(Si) ∩ GMEP(Θ , h) ∩ VI(C, A) in
Theorems . and . of [].

(iv) Our Theorems . and . extend Theorems . and . of [] from one
nonexpansive mapping T to infinitely many nonexpansive mappings {Tn}∞n= and
from one variational inequality to finitely many variational inequalities. Moreover,
these also extend Theorems . and . of [] from one nonexpansive mapping
T to infinitely many nonexpansive mappings {Tn}∞n= and generalize Theorems .
and . of [] to the setting of finitely many variational inequalities.

4 Applications
For a given nonlinear mapping A : C → H , we consider the variational inequality problem
(VIP) of finding x̄ ∈ C such that

〈Ax̄, y – x̄〉 ≥ , ∀y ∈ C. (.)

We will denote by VI(C, A) the set of solutions of the VIP (.).
Recall that if u is a point in C, then the following relation holds:

u ∈ VI(C, A) ⇔ u = PC(I – λA)u, ∀λ > . (.)

An operator A : C → H is said to be an α-inverse strongly monotone operator if there
exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

As an example, we recall that the α-inverse strongly monotone operators are firmly non-
expansive mappings if α ≥  and that every α-inverse strongly monotone operator is also

α

-Lipschitz continuous (see []).
Let us observe also that, if A is α-inverse strongly monotone, the mappings PC(I – λA)

are nonexpansive for all λ ∈ (, α] since they are compositions of nonexpansive mappings
(see p. in []).
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Let us consider S̃, . . . , S̃K a finite number of nonexpansive self-mappings on C and
Ã, . . . , ÃN be a finite number of α-inverse strongly monotone operators. Let {Tn}∞n= be
a sequence of nonexpansive self-mappings on C. Let us consider the mixed problem of
finding x∗ ∈ ⋂∞

n= Fix(Tn) ∩ GMEP(Θ , h) ∩ ⋂M
k= VI(C, Ak) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(I – S̃)x∗, y – x∗〉 ≥ , ∀y ∈ ⋂∞
n= Fix(Tn) ∩ GMEP(Θ , h) ∩ ⋂M

k= VI(C, Ak),
〈(I – S̃)x∗, y – x∗〉 ≥ , ∀y ∈ ⋂∞

n= Fix(Tn) ∩ GMEP(Θ , h) ∩ ⋂M
k= VI(C, Ak),

. . . ,
〈(I – S̃K )x∗, y – x∗〉 ≥ , ∀y ∈ ⋂∞

n= Fix(Tn) ∩ GMEP(Θ , h) ∩ ⋂M
k= VI(C, Ak),

〈Ãx∗, y – x∗〉 ≥ , ∀y ∈ C,
〈Ãx∗, y – x∗〉 ≥ , ∀y ∈ C,
. . . ,
〈ÃN x∗, y – x∗〉 ≥ , ∀y ∈ C.

(.)

Let us call (SVI) the set of solutions of the (K + N)-system. This problem is equivalent to
finding a common fixed point of {Tn}∞n=, {P⋂∞

n= Fix(Tn)∩GMEP(Θ ,h)∩⋂M
k= VI(C,Ak )̃Si}K

i=, {PC(I –
λÃi)}N

i=. So we claim that the following holds.

Theorem . Let us suppose that Ω =
⋂∞

n= Fix(Tn) ∩ (SVI) ∩ GMEP(Θ , h) ∩ ⋂M
k= VI(C,

Ak) = ∅. Fix λ > . Let {αn}, {βn,i}, i = , . . . , (K + N), be sequences in (, ) such that  <
lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for all indices i. Moreover, let us suppose that (H)-
(H) hold. Then the sequences {xn}, {yn}, and {un} explicitly defined by the scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,P⋂∞

n= Fix(Tn)∩GMEP(Θ ,h)∩⋂M
k= VI(C,Ak )̃Sun + ( – βn,)un,

yn,i = βn,iP⋂∞
n= Fix(Tn)∩GMEP(Θ ,h)∩⋂M

k= VI(C,Ak )̃Siun + ( – βn,i)yn,i–, i = , . . . , K ,
yn,K+j = βn,K+jPC(I – λÃj)un + ( – βn,K+j)yn,K+j–, j = , . . . , N ,
yn = αnf (yn,K+N ) + ( – αn)WnΛ

M
n yn,K+N ,

xn+ = ( – βn)yn + βnWnΛ
M
n yn, ∀n ≥ ,

(.)

all converge strongly to the unique solution x∗ in Ω to the VIP

〈
f
(
x∗) – x∗, z – x∗〉 ≤ , ∀x ∈ Ω .

Theorem . Let us suppose that Ω = ∅. Fix λ > . Let {αn}, {βn,i}, i = , . . . , (K + N), be
sequences in (, ) and βn,i → βi for all i as n → ∞. Suppose that there exists k ∈ {, . . . , K +
N} such that βn,k →  as n → ∞. Let k ∈ {, . . . , K + N} be the largest index for which
βn,k → . Moreover, let us suppose that (H), (H), and (H) hold and

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i →  then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi =  then βi lies in (, ).

Then the sequences {xn}, {yn}, and {un} explicitly defined by scheme (.) all converge
strongly to the unique solution x∗ in Ω to the VIP

〈
f
(
x∗) – x∗, z – x∗〉 ≤ , ∀z ∈ Ω .
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Remark . If in system (.), A = · · · = AM = Ã = · · · = ÃN = , and Tn ≡ T a nonex-
pansive mapping, we obtain a system of hierarchical fixed point problems introduced by
Mainge and Moudafi [, ].

On the other hand, recall that a mapping Γ : C → C is called κ-strictly pseudocontrac-
tive if there exists a constant κ ∈ [, ) such that

‖Γ x – Γ y‖ ≤ ‖x – y‖ + κ
∥∥(I – Γ )x – (I – Γ )y

∥∥, ∀x, y ∈ C.

If κ = , then Γ is nonexpansive. Put A = I – Γ , where Γ : C → C is a κ-strictly pseudo-
contractive mapping. Then A is –κ

 -inverse strongly monotone; see [].
Utilizing Theorems . and ., we first give the following strong convergence theo-

rems for finding a common element of the solution set GMEP(Θ , h) of GMEP (.) and
the common fixed point set

⋂∞
n= Fix(Tn) ∩⋂N

i= Fix(Si) ∩⋂M
k= Fix(Γk) of a finite family of

κk-strictly pseudocontractive mappings {Γk}M
k=, one finite family of nonexpansive map-

pings {Si}N
i=, and another infinite family of nonexpansive mappings {Tn}∞n=.

Theorem . Let ηk = –κk
 for each k = , . . . , M. Let us suppose that Ω =

⋂∞
n= Fix(Tn) ∩

⋂N
i= Fix(Si) ∩ ⋂M

k= Fix(Γk) ∩ GMEP(Θ , h) = ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in
(, ) such that  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for all indices i. Moreover, let us
suppose that (H)-(H) hold. Then the sequences {xn}, {yn}, and {un} generated explicitly
by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)Wn

∏M
k=(( – λk,n)I + λk,nΓk)yn,N ,

xn+ = ( – βn)yn + βnWn
∏M

k=(( – λk,n)I + λk,nΓk)yn, ∀n ≥ ,

(.)

all converge strongly to the unique solution x∗ in Ω to the VIP

〈
f
(
x∗) – x∗, z – x∗〉 ≤ , ∀z ∈ Ω .

Proof In Theorem ., put Ak = I – Γk for each k = , . . . , M. Then Ak is –κk
 -inverse

strongly monotone. Hence we deduce that Fix(Γk) = VI(C, Ak) and PC(I – λ,nA)yn,N =
( –λ,n)yn,N +λ,nΓyn,N . Thus, it is easy to see that ΛM

n yn,N =
∏M

k=(( –λk,n)I +λk,nΓk)yn,N .
Similarly, we also have ΛM

n yn =
∏M

k=(( –λk,n)I +λk,nΓk)yn. Consequently, in terms of The-
orem ., we obtain the desired result. �

Theorem . Let ηk = –κk
 for each k = , . . . , M. Let us suppose that Ω =

⋂∞
n= Fix(Tn) ∩

⋂N
i= Fix(Si) ∩ ⋂M

k= Fix(Γk) ∩ GMEP(Θ , h) = ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in
(, ) such that βn,i → βi for all i as n → ∞. Suppose that there exists k ∈ {, . . . , N} for
which βn,k →  as n → ∞. Let k ∈ {, . . . , N} be the largest index for which βn,k → .
Moreover, let us suppose that (H), (H), and (H) hold and

(i) αn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i →  then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi =  then βi lies in (, ).
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Then the sequences {xn}, {yn}, and {un} generated explicitly by (.) all converge strongly to
the unique solution x∗ in Ω to the VIP

〈
f
(
x∗) – x∗, z – x∗〉 ≤ , ∀z ∈ Ω .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China. 2Scientific Computing Key
Laboratory of Shanghai Universities, Shanghai, 200234, China. 3Department of Mathematics, King Abdulaziz University,
P.O. Box 80203, Jeddah, 21589, Saudi Arabia. 4Department of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah,
21589, Saudi Arabia.

Acknowledgements
This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. Therefore, the
authors acknowledge with thanks DSR, for technical and financial support.

Received: 1 April 2015 Accepted: 16 June 2015

References
1. Lions, JL: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)
2. Glowinski, R: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
3. Oden, JT: Quantitative Methods on Nonlinear Mechanics. Prentice Hall, Englewood Cliffs (1986)
4. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
5. Zeidler, E: Nonlinear Functional Analysis and Its Applications. Springer, New York (1985)
6. Korpelevich, GM: The extragradient method for finding saddle points and other problems. Matecon 12, 747-756

(1976)
7. Ceng, LC, Ansari, QH, Yao, JC: An extragradient method for solving split feasibility and fixed point problems. Comput.

Math. Appl. 64(4), 633-642 (2012)
8. Ceng, LC, Yao, JC: An extragradient-like approximation method for variational inequality problems and fixed point

problems. Appl. Math. Comput. 190, 205-215 (2007)
9. Ceng, LC, Hadjisavvas, N, Wong, NC: Strong convergence theorem by a hybrid extragradient-like approximation

method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635-646 (2010)
10. Nadezhkina, N, Takahashi, W: Strong convergence theorem by a hybrid method for nonexpansive mappings and

Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230-1241 (2006)
11. Nadezhkina, N, Takahashi, W: Weak convergence theorem by an extragradient method for nonexpansive mappings

and monotone mappings. J. Optim. Theory Appl. 128, 191-201 (2006)
12. Zeng, LC, Yao, JC: Strong convergence theorem by an extragradient method for fixed point problems and variational

inequality problems. Taiwan. J. Math. 10(5), 1293-1303 (2006)
13. Ceng, LC, Ansari, QH, Yao, JC: Relaxed extragradient methods for finding minimum-norm solutions of the split

feasibility problem. Nonlinear Anal. 75(4), 2116-2125 (2012)
14. Ceng, LC, Yao, JC: A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system

of generalized equilibria and a fixed point problem. Nonlinear Anal. 72, 1922-1937 (2010)
15. Ceng, LC, Ansari, QH, Schaible, S: Hybrid extragradient-like methods for generalized mixed equilibrium problems,

system of generalized equilibrium problems and optimization problems. J. Glob. Optim. 53, 69-96 (2012)
16. Ceng, LC, Ansari, QH, Yao, JC: Relaxed extragradient iterative methods for variational inequalities. Appl. Math.

Comput. 218, 1112-1123 (2011)
17. Yao, Y, Liou, YC, Kang, SM: Approach to common elements of variational inequality problems and fixed point

problems via a relaxed extragradient method. Comput. Math. Appl. 59, 3472-3480 (2010)
18. Ceng, LC, Teboulle, M, Yao, JC: Weak convergence of an iterative method for pseudomonotone variational

inequalities and fixed point problems. J. Optim. Theory Appl. 146, 19-31 (2010)
19. Ceng, LC, Guu, SM, Yao, JC: Finding common solutions of a variational inequality, a general system of variational

inequalities, and a fixed-point problem via a hybrid extragradient method. Fixed Point Theory Appl. 2011, Article ID
626159 (2011)

20. Ceng, LC, Ansari, QH, Wong, MM, Yao, JC: Mann type hybrid extragradient method for variational inequalities,
variational inclusions and fixed point problems. Fixed Point Theory 13(2), 403-422 (2012)

21. Latif, A, Sahu, D, Ansari, QH: Variable KM-like algorithm for fixed point problems and split feasibility problems. Fixed
Point Theory Appl. 2014, 211 (2014)

22. Latif, A, Al-Mazrooei, AE, Alofi, ASM, Yao, JC: Shrinking projection method for systems of generalized equilibria with
constraints of variational inclusion and fixed point problems. Fixed Point Theory Appl. 2014, 164 (2014)

23. Bin Dehaish, BA, Latif, A, Bakodah, HO, Qin, X: A viscosity splitting algorithm for solving inclusion and equilibrium
problems. J. Inequal. Appl. 2015, 50 (2015)

24. Ceng, LC, Latif, A, Al-Mazrooei, AE: Hybrid viscosity methods for equilibrium problems, variational inequalities, and
fixed point problems. Appl. Anal. (2015). doi:10.1080/00036811.2015.1051971

http://dx.doi.org/10.1080/00036811.2015.1051971


Ceng et al. Journal of Inequalities and Applications  (2015) 2015:217 Page 34 of 34

25. Jung, JS: A new iteration method for nonexpansive mappings and monotone mappings in Hilbert spaces. J. Inequal.
Appl. 2010, Article ID 251761 (2010)

26. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1-4),
123-145 (1994)

27. Oettli, W: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 215-221 (1997)
28. Ceng, LC, Kong, ZR, Wen, CF: On general systems of variational inequalities. Comput. Math. Appl. 66, 1514-1532

(2013)
29. Ceng, LC, Petrusel, A, Yao, JC: Composite viscosity approximation methods for equilibrium problem, variational

inequality and common fixed points. J. Nonlinear Convex Anal. 15(1), 219-240 (2014)
30. Marino, G, Muglia, L, Yao, Y: Viscosity methods for common solutions of equilibrium and variational inequality

problems via multi-step iterative algorithms and common fixed points. Nonlinear Anal. 75, 1787-1798 (2012)
31. Takahashi, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive

mapping in a Hilbert space. Nonlinear Anal. 69, 1025-1033 (2008)
32. Ceng, LC, Yao, JC: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput.

Appl. Math. 214, 186-201 (2008)
33. Moudafi, A, Mainge, P-E: Strong convergence of an iterative method for hierarchical fixed point problems. Pac.

J. Optim. 3(3), 529-538 (2007)
34. Moudafi, A: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear

Convex Anal. 9(1), 37-43 (2008)
35. Ceng, LC, Petrusel, A, Yao, JC: Iterative approaches to solving equilibrium problems and fixed point problems of

infinitely many nonexpansive mappings. J. Optim. Theory Appl. 143, 37-58 (2009)
36. Yao, Y, Liou, YC, Yao, JC: Convergence theorem for equilibrium problems and fixed point problems of infinite family of

nonexpansive mappings. Fixed Point Theory Appl. 2007, Article ID 064363 (2007)
37. Colao, V, Marino, G, Xu, HK: An iterative method for finding common solutions of equilibrium and fixed point

problems. J. Math. Anal. Appl. 344, 340-352 (2008)
38. Cianciaruso, F, Marino, G, Muglia, L, Yao, Y: A hybrid projection algorithm for finding solutions of mixed equilibrium

problem and variational inequality problem. Fixed Point Theory Appl. 2010, Article ID 383740 (2010)
39. Yao, Y, Liou, Y-C, Marino, G: Two-step iterative algorithms for hierarchical fixed point problems and variational

inequality problems. J. Appl. Math. Comput. 31(1-2), 433-445 (2009)
40. Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241(1), 46-55 (2000)
41. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
42. Shimoji, K, Takahashi, W: Strong convergence to common fixed points of infinite nonexpansive mappings and

applications. Taiwan. J. Math. 5, 387-404 (2001)
43. Goebel, K, Kirk, WA: Topics on Metric Fixed-Point Theory. Cambridge University Press, Cambridge (1990)
44. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(2), 240-256 (2002)
45. Rockafellar, RT: Monotone operators and the proximal point algorithms. SIAM J. Control Optim. 14, 877-898 (1976)
46. Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings.

J. Optim. Theory Appl. 118(2), 417-428 (2003)
47. Moudafi, A, Mainge, P-E: Towards viscosity approximations of hierarchical fixed point problems. Fixed Point Theory

Appl. 2006, Article ID 95453 (2006)


	Composite viscosity methods for common solutions of general mixed equilibrium problem, variational inequalities and common ﬁxed points
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


