6 research outputs found

    Multi-Agent Pursuit-Evasion Game Based on Organizational Architecture

    Get PDF
    Multi-agent coordination mechanisms are frequently used in pursuit-evasion games with the aim of enabling the coalitions of the pursuers and unifying their individual skills to deal with the complex tasks encountered. In this paper, we propose a coalition formation algorithm based on organizational principles and applied to the pursuit-evasion problem. In order to allow the alliances of the pursuers in different pursuit groups, we have used the concepts forming an organizational modeling framework known as YAMAM (Yet Another Multi Agent Model). Specifically, we have used the concepts Agent, Role, Task, and Skill, proposed in this model to develop a coalition formation algorithm to allow the optimal task sharing. To control the pursuers\u27 path planning in the environment as well as their internal development during the pursuit, we have used a Reinforcement learning method (Q-learning). Computer simulations reflect the impact of the proposed techniques

    Multi-Agent Dynamic Leader-Follower Path Planning Applied to the Multi-Pursuer Multi-Evader Game

    Get PDF
    Multi-agent collaborative path planning focuses on how the agents have to coordinate their displacements in the environment to achieve different targets or to cover a specific zone in a minimum of time. Reinforcement learning is often used to control the agents' trajectories in the case of static or dynamic targets. In this paper, we propose a multi-agent collaborative path planning based on reinforcement learning and leader-follower principles. The main objectives of this work are the development of an applicable motion planning in a partially observable environment, and also, to improve the agents' cooperation level during the tasks' execution via the creation of a dynamic hierarchy in the pursuit groups. This dynamic hierarchy is reflected by the possibility of reattributing the roles of Leaders and Followers at each iteration in the case of mobile agents to decrease the task's execution time. The proposed approach is applied to the Multi-Pursuer Multi-Evader game in comparison with recently proposed path planning algorithms dealing with the same problem. The simulation results reflect how this approach improves the pursuit capturing time and the payoff acquisition during the pursuit

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    The Ocean Sampling Day Consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
    corecore