13 research outputs found
Metabolomic-guided isolation of bioactive natural products from Curvularia sp., an endophytic fungus of Terminalia laxiflora
Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora. Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF-kappaB and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using HRESIMS directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N-acetylphenylalanine (1) and two linear peptide congeners of 1: dipeptide N-acetylphenylalanyl-L-phenylalanine (2) and tripeptide N-acetylphenylalanyl-L-phenylalanyl-L-leucine (3)
Effect of bee venom and its fractions on the release of pro-inflammatory cytokines in PMA-differentiated U937 cells co-stimulated with LPS
The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme
Metabolomic profiling of Malaysian and New Zealand honey using concatenated NMR and HRMS datasets
This study aims to compare the metabolomic profiles of Malaysian and New Zealand honey while determining their anti-oncogenic activity for potential prophylactic functions. Metabolomics tools including multivariate analysis were applied on concatenated LC-HRMS and NMR datasets to afford an intensive chemical profile of honey samples and have a snapshot of the bioactive metabolites in the respective collections. Malaysian samples were found to have higher sugar and polyphenolic content, while New Zealand samples afforded higher concentration of low molecular weight (MW) lipids. However, New Zealand honey collected from the northern islands had higher concentration of acetylated saccharides, while those from the southern islands yielded higher low MW phenolic metabolites that were comparable to Malaysian honey. Mild anti-oncogenic compounds against breast cancer cell line ZR75 were putatively identified in Malaysian honey that included earlier described antioxidants such as gingerdiol, 2-hexylphenol-O-β-D-xylopyranoside, plastoquinone, tropine isovalerate, plumerinine, and 3,5-(12-phenyl-8-dodecenyl)resorcinol, along with several phenolic esters and lignans
Metabolomic Profiling of Malaysian and New Zealand Honey Using Concatenated NMR and HRMS Datasets
This study aims to compare the metabolomic profiles of Malaysian and New Zealand honey while determining their anti-oncogenic activity for potential prophylactic functions. Metabolomics tools including multivariate analysis were applied on concatenated LC-HRMS and NMR datasets to afford an intensive chemical profile of honey samples and have a snapshot of the bioactive metabolites in the respective collections. Malaysian samples were found to have higher sugar and polyphenolic content, while New Zealand samples afforded higher concentration of low molecular weight (MW) lipids. However, New Zealand honey collected from the northern islands had higher concentration of acetylated saccharides, while those from the southern islands yielded higher low MW phenolic metabolites that were comparable to Malaysian honey. Mild anti-oncogenic compounds against breast cancer cell line ZR75 were putatively identified in Malaysian honey that included earlier described antioxidants such as gingerdiol, 2-hexylphenol-O-β-D-xylopyranoside, plastoquinone, tropine isovalerate, plumerinine, and 3,5-(12-phenyl-8-dodecenyl)resorcinol, along with several phenolic esters and lignans
Side-on binding of p-sulphonatocalix[4]arene to the dinuclear platinum complex trans-[{PtCl(NH3)2}2μ-dpzm]2+ and its implications for anticancer drug delivery
The utility of p-sulphonatocalix[4]arene (s-CX[4]) as a drug delivery vehicle for multinuclear platinum anticancer agents, using trans-[{PtCl(NH3)2}2μ-dpzm]2+ (di-Pt; where dpzm = 4,4′-dipyrazolylmethane) as a model complex, has been examined using 1H nuclear magnetic resonance, electrospray ionisation mass spectrometry, molecular modelling and in vitro growth inhibition assays. s-CX[4] binds di-Pt in a side-on fashion in a ratio of 1:1, with the dpzm ligand of the metal complex located within the s-CX[4] cavity with binding further stabilised by ion-ion interactions and hydrogen bonding between the metal complex am(m)ine groups and the s-CX[4] sulphate groups. Partial encapsulation of di-Pt within the cavity does not prevent binding of 5′-guanosine monophosphate to the metal complex. When bound to two individual guanosine molecules, di-Pt also remains partially bound by s-CX[4]. The cytotoxicity of free di-Pt and s-CX[4] and their host guest complex was examined using in vitro growth inhibition assays in the A2780 and A2780cis human ovarian cancer cell lines. Free di-Pt has an IC50 of 100 and 60 μM, respectively, in the cell lines, which is significantly less active than cisplatin (1.9 and 8.1 μM, respectively). s-CX[4] displays no cytotoxicity at concentrations up to 1.5 mM and does not affect the cytotoxicity of di-Pt, probably because its low binding constant to the metal complex (6.8 × 104 M−1) means the host-guest complex is mostly disassociated at biologically relevant concentrations
Synthesis of the 2-aminothiazole-4-carboxylate analogues.
<p>Synthesis of the 2-aminothiazole-4-carboxylate analogues.</p