190 research outputs found

    Lamb wave line sensing for crack detection in a welded stiffener

    Get PDF
    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.open0

    Dentin bonding on different walls of a class II preparation

    Get PDF
    Purpose: To evaluate the bond strength on different cavity walls of Class 11 preparations. Different bonding systems and the effect of thermomechanical cycling were investigated. Materials and Methods: Human third molars received MOD preparations with dentin margins. Teeth were randomly assigned to 18 groups (n = 5) according to the combination of cavity wall (axial, occlusal, and gingival), bonding system (Single Bond Plus, Clearfil SE Bond, and Adper Prompt) and the occurrence of thermomechanical cycling. Restorations were concluded with Filtek Z250 composite. Specimens were sectioned according to the respective cavity wall (4 slabs/restoration), and the adhesive interface was trimmed to an hourglass shape (1 mm(2)). Slabs were tested under tension, and failure mode was observed. Bond strength data were analyzed with three-way ANOVA/Tukey's test. Results: Single Bond Plus and Clearfil SE Bond performed similarly under most experimental conditions. Single Bond Plus presented similar bond strength on the three cavity walls, regardless of the aging condition. Clearfil SE Bond exhibited significant differences among cavity walls: the occlusal wall showed higher means in both aging conditions. Non-aged gingival walls and aged axial and gingival walls yielded lower means. Non-aged Adper Prompt produced similar bond strengths on the three cavity walls. After thermomechanical cycling, the gingival wall showed lower means. Conclusion: The effect of cavity walls was dependent on the bonding system and thermomechanical cycling. Adper Prompt demonstrated bond strengths lower than Single Bond Plus or Clearfil SE Bond under most experimental conditions.101172

    Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Get PDF
    In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors

    The velocity dispersion and mass function of the outer halo globular cluster Palomar 4

    Get PDF
    We obtained precise line-of-sight radial velocities of 23 member stars of the remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass function of the cluster down to a limiting magnitude of V~28 mag using archival HST/WFPC2 imaging. We derived the cluster's surface brightness profile based on the WFPC2 data and on broad-band imaging with the Low-Resolution Imaging Spectrometer (LRIS) at the Keck II telescope. We find a mean cluster velocity of 72.55+/-0.22 km/s and a velocity dispersion of 0.87+/-0.18 km/s. The global mass function of the cluster, in the mass range 0.55<=M<=0.85 M_solar, is shallower than a Kroupa mass function and the cluster is significantly depleted in low-mass stars in its center compared to its outskirts. Since the relaxation time of Pal 4 is of the order of a Hubble time, this points to primordial mass segregation in this cluster. Extrapolating the measured mass function towards lower-mass stars and including the contribution of compact remnants, we derive a total cluster mass of 29800 M_solar. For this mass, the measured velocity dispersion is consistent with the expectations of Newtonian dynamics and below the prediction of Modified Newtonian Dynamics (MOND). Pal 4 adds to the growing body of evidence that the dynamics of star clusters in the outer Galactic halo can hardly be explained by MOND.Comment: 17 pages, accepted for publication in MNRAS; Fig. 8 surface brightness/density data at github.com/matthiasjfrank/pal4_surface_brightnes

    Measuring the Initial Mass Function of Low Mass Stars and Brown Dwarfs

    Full text link
    I review efforts to determine the form and any lower limit to the initial mass function in the Galactic disk, using observations of low-mass stars and brown dwarfs in the field, young clusters and star forming regions. I focus on the methodologies that have been used and the uncertainties that exist due to observational limitations and to systematic uncertainties in calibrations and theoretical models. I conclude that whilst it is possible that the low-mass IMFs deduced from the field and most young clusters are similar, there are too many problems to be sure; there are examples of low-mass cluster IMFs that appear to be very discrepant and the IMFs for brown dwarfs in the field and young clusters have yet to be reconciled convincingly.Comment: From a series of lectures presented at the Evry-Schatzman school on Low-mass stars and the transition from stars to brown dwarfs, edited by C. Charbonnel, C. Reyle, M. Schultheis. To appear in the EAS Conference Series. 47p

    Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

    Get PDF
    Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95^(m − 1) for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Statistical results on restorative dentistry experiments: effect of the interaction between main variables

    Get PDF
    Statistical analysis interpretation is a critical field in scientifc research. When there is more than one main variable being studied in a research, the effect of the interaction between those variables is fundamental on experiments discussion. However, some doubts can occur when the p-value of the interaction is greater than the signifcance level. OBJECTIVE: To determine the most adequate interpretation for factorial experiments with p-values of the interaction nearly higher than the signifcance level. MATERIALS AND METHODS: The p-values of the interactions found in two restorative dentistry experiments (0.053 and 0.068) were interpreted in two distinct ways: considering the interaction as not signifcant and as signifcant. RESULTS: Different findings were observed between the two analyses, and studies results became more coherent when the signifcant interaction was used. CONCLUSION: The p-value of the interaction between main variables must be analyzed with caution because it can change the outcomes of research studies. Researchers are strongly advised to interpret carefully the results of their statistical analysis in order to discuss the findings of their experiments properly
    corecore