290 research outputs found

    Incompatibility Systems in Switchgrass

    Get PDF
    Switchgrass (Panicum virgatum L.), a cross-pollinated perennial, produces very little or no seed when self-pollinated, indicating the presence of self-incompatibility mechanisms. Knowledge of self-incompatibility mechanisms is required to use germplasm effectively in a breeding program. The objective of this study was to characterize features of the incompatibility systems in switchgrass. Seed set and seed characteristics of reciprocal matings of tetraploid, octaploid, and tetraploid x octaploid plants were used as measures of incompatibility. Both bagged mutual pollination and manual emasculation and pollination methods were used to make crosses. The percentages of self-compatibility in the tetraploid and octaploid parent plants were 0.35 and 1.39%, respectively. Prefertilization incompatibility in switchgrass is apparently under gametophytic control, since there were significant differences in percentage of compatible pollen as measured by percentage of total seed set between reciprocal matings within ploidy levels. Results indicated that the prefertilization incompatibility system in switchgrass is similar to the S-Z incompatibility system found in other members of the Poaceae. A postfertilization incompatibility system also exists that inhibits intermatings among octaploid and tetraploid plants. In these interploidy crosses, two very distinctive types of abnormal seed were found. When the female parent was the tetraploid plant, the resulting seed was small and shriveled, while when the female parent was the octaploid, small seed with floury endosperm was obtained. These results are similar to those obtained for endosperm incompatibility due to the endosperm balance number system found in other species

    Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Full text link
    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore