22 research outputs found

    The relationship between spasticity in young children (18 months of age) with cerebral palsy and their gross motor function development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is thought that spasticity has an influence on the development of functional motor abilities among children with cerebral palsy (CP). The extent to which spasticity is associated with the change in motor abilities in young children with CP has not been established. The objective of this study is to evaluate the relationship of initial spasticity in young children with CP and their gross motor function development over one year.</p> <p>Methods</p> <p>Fifty children with CP aged 18 months, GMFCS-levels I-V participated in a longitudinal observational study. Change in gross motor functioning (GMFM-66) was measured over one year. The level of spasticity measured at the first assessment was determined with the Modified Tardieu Scale in three muscle groups of the lower extremity (adductor muscles, the hamstrings and the m. gastrocnemius). The Spasticity Total Score per child was calculated with a maximum score of 12 points.</p> <p>Results</p> <p>Spearman's Rho Correlation (-0.28) revealed a statistically significant relationship (p < 0.05) of small strength between the Spasticity Total Score and the change score of the GMFM-66.</p> <p>Conclusion</p> <p>Our findings indicate that when measured over one year, spasticity is marginally related to gross motor function development in infants with CP. The initial level of spasticity is only one of the many child, environmental and family factors that determines gross motor development of a young child with CP.</p

    Percutaneous radiofrequency lesions adjacent to the dorsal root ganglion alleviate spasticity and pain in children with cerebral palsy: pilot study in 17 patients

    Get PDF
    BACKGROUND: Cerebral palsy (CP) may cause severe spasticity, requiring neurosurgical procedures. The most common neurosurgical procedures are continuous infusion of intrathecal baclofen and selective dorsal rhizotomy. Both are invasive and complex procedures. We hypothesized that a percutaneous radiofrequency lesion of the dorsal root ganglion (RF-DRG) could be a simple and safe alternative treatment. We undertook a pilot study to test this hypothesis. METHODS: We performed an RF-DRG procedure in 17 consecutive CP patients with severe hip flexor/adductor spasms accompanied by pain or care-giving difficulties. Six children were systematically evaluated at baseline, and 1 month and 6 months after treatment by means of the Modified Ashworth Scale (MAS), Gross Motor Function Measure (GMFM) and a self-made caregiver's questionnaire. Eleven subsequent children were evaluated using a Visual Analogue Scale (VAS) for spasticity, pain and ease of care. RESULTS: A total of 19 RF-DRG treatments were performed in 17 patients. We found a small improvement in muscle tone measured by MAS, but no effect on the GMFM scale. Despite this, the caregivers of these six treated children unanimously stated that the quality of life of their children had indeed improved after the RF-DRG. In the subsequent 11 children we found improvements in all VAS scores, in a range comparable to the conventional treatment options. CONCLUSION: RF-DRG is a promising new treatment option for severe spasticity in CP patients, and its definitive effectiveness remains to be defined in a randomised controlled trial

    Modified constraint-induced movement therapy or bimanual occupational therapy following injection of Botulinum toxin-A to improve bimanual performance in young children with hemiplegic cerebral palsy: a randomised controlled trial methods paper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of Botulinum toxin-A (BoNT-A) for treatment of upper limb spasticity in children with cerebral palsy has become routine clinical practice in many paediatric treatment centres worldwide. There is now high-level evidence that upper limb BoNT-A injection, in combination with occupational therapy, improves outcomes in children with cerebral palsy at both the body function/structure and activity level domains of the International Classification of Functioning, Disability and Health. Investigation is now required to establish what amount and specific type of occupational therapy will further enhance functional outcomes and prolong the beneficial effects of BoNT-A.</p> <p>Methods/Design</p> <p>A randomised, controlled, evaluator blinded, prospective parallel-group trial. Eligible participants were children aged 18 months to 6 years, diagnosed with spastic hemiplegic cerebral palsy and who were able to demonstrate selective motor control of the affected upper limb. Both groups received upper limb injections of BoNT-A. Children were randomised to either the modified constraint-induced movement therapy group (experimental) or bimanual occupational therapy group (control). Outcome assessments were undertaken at pre-injection and 1, 3 and 6 months following injection of BoNT-A. The primary outcome measure was the Assisting Hand Assessment. Secondary outcomes included: the Quality of Upper Extremity Skills Test; Pediatric Evaluation of Disability Inventory; Canadian Occupational Performance Measure; Goal Attainment Scaling; Pediatric Motor Activity Log; modified Ashworth Scale and; the modified Tardieu Scale.</p> <p>Discussion</p> <p>The aim of this paper is to describe the methodology of a randomised controlled trial comparing the effects of modified constraint-induced movement therapy (a uni-manual therapy) versus bimanual occupational therapy (a bimanual therapy) on improving bimanual upper limb performance of children with hemiplegic cerebral palsy following upper limb injection of BoNT-A. The paper outlines the background to the study, the study hypotheses, outcome measures and trial methodology. It also provides a comprehensive description of the interventions provided.</p> <p>Trial Registration</p> <p>ACTRN12605000002684</p

    Regulation of Early Cartilage Destruction in Inflammatory Arthritis by Death Receptor 3

    No full text
    Objective: To investigate the role of death receptor 3 (DR-3) and its ligand tumor necrosis factor–like molecule 1A (TL1A) in the early stages of inflammatory arthritis. Methods: Antigen-induced arthritis (AIA) was generated in C57BL/6 mice deficient in the DR-3 gene (DR3−/−) and their DR3+/+ (wild-type) littermates by priming and intraarticular injection of methylated bovine serum albumin. The joints were sectioned and analyzed histochemically for damage to cartilage and expression of DR3, TL1A, Ly-6G (a marker for neutrophils), the gelatinase matrix metalloproteinase 9 (MMP-9), the aggrecanase ADAMTS-5, and the neutrophil chemoattractant CXCL1. In vitro production of MMP-9 was measured in cultures from fibroblasts, macrophages, and neutrophils following the addition of TL1A and other proinflammatory stimuli. Results: DR3 expression was up-regulated in the joints of wild-type mice following generation of AIA. DR3−/− mice were protected against cartilage damage compared with wild-type mice, even at early time points prior to the main accumulation of Teff cells in the joint. Early protection against AIA in vivo correlated with reduced levels of MMP-9. In vitro, neutrophils were major producers of MMP-9, while neutrophil numbers were reduced in the joints of DR3−/− mice. However, TL1A neither induced MMP-9 release nor affected the survival of neutrophils. Instead, reduced levels of CXCL1 were observed in the joints of DR3−/− mice. Conclusion: DR-3 drives early cartilage destruction in the AIA model of inflammatory arthritis through the release of CXCL1, maximizing neutrophil recruitment to the joint and leading to enhanced local production of cartilage-destroying enzymes
    corecore