80 research outputs found

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Search for t t ¯ tt \mathrm{t}\overline{\mathrm{t}} resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 s=13 \sqrt{s}=13 TeV

    Full text link

    Search for top quark partners with charge 5/3 in proton-proton collisions at s = 13 s=13 \sqrt{s}=13 TeV

    Full text link

    Influence of a proximal margin elevation technique on marginal adaptation of ceramic inlays

    Full text link
    PURPOSE: Evaluating the effect of a proximal margin elevation technique on marginal adaptation of ceramic inlays. METHODS: Class II MOD-cavities were prepared in 40 human molars and randomly distributed to four groups (n = 10). In group EN (positive control) proximal margins were located in enamel, 1 mm above the cementoenamel junction, while 2 mm below in groups DE-1In, DE-2In and DE. The groups DE-1In, DE-2In and DE simulated subgingival location of the cervical margin. In group DE-1In one 3 mm and in group DE-2In two 1.5 mm composite layers (Tetric) were placed for margin elevation of the proximal cavities using Syntac classic as an adhesive. The proximal cavities of group DE remained untreated and served as a negative control. In all groups, ceramic inlays (Cerec 3D) were adhesively inserted. Replicas were taken before and after thermomechanical loading (1.200.000 cycles, 50/5°C, max. load 49 N). Marginal integrity (tooth-composite, composite-inlay) was evaluated with scanning electron microscopy (200×). Percentage of continuous margin (% of total proximal margin length) was compared between groups before and after cycling using ANOVA and Scheffé post-hoc test. RESULTS: After thermomechanical loading, no significant differences were observed between the different groups with respect to the interface composite-inlay and tooth-composite with margins in dentin. The interface tooth-composite in enamel of group EN was significantly better compared to group DE-2In, which was not different to the negative control group DE and DE-1In. CONCLUSION: Margin elevation technique by placement of a composite filling in the proximal box before insertion of a ceramic inlay results in marginal integrities not different from margins of ceramic inlays placed in dentin
    corecore