171 research outputs found

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Asteroseismology

    Full text link
    Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar Systems", eds. T. D. Oswalt et al., Springer Verla

    Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    Get PDF
    Background: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our result

    Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    Get PDF
    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases

    Resolving confusions about jarrah dieback - don’t forget the plants

    Get PDF
    The name jarrah dieback has been used for two different disorders, leading to considerable confusion. It was coined in the 1940s to describe the sudden death of groups of jarrah (Eucalyptus marginata) trees in south western Western Australia, which occurred on poorly drained sites, following exceptionally heavy rainfall. In the 1960s these sites were shown to be infested by Phytophthora cinnamomi and jarrah deaths were attributed to it, even though it was only isolated from 5 % of sampled trees. Also the definition of jarrah dieback was expanded to include deaths of many other plants on infested sites, from which P. cinnamomi was more readily isolated. Jarrah trees die from severe water deficiency, indicating problems with water conduction through roots. Xylem vessel diameters vary along roots, being narrow at the root collar, while distally they are larger, providing water storage. Jarrah transpires vigorously during summer, accessing water at depth on sites with deep soil, but being more dependent on internally stored water when root systems are shallower. Following waterlogging, sapwood vessels become blocked with tyloses, reducing both conductivity and potential water storage; such trees may have insufficient water reserves for summer survival. In jarrah P. cinnamomi is unlikely to cause water deficiency because sapwood invasion is rapidly contained in healthy roots. Recent investigations into P. cinnamomi invasion and host responses in other plants show that it can potentially cause a vascular wilt in Banksia spp. and chronic, symptomless infections in herbaceous plants. Susceptibility to waterlogging damage, and/or mortality resulting from infection by P. cinnamomi can only be clarified by detailed knowledge of the hosts and their vulnerabilities. This is essential for making diagnoses, devising management strategies, and avoiding the confusions of the past

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    The Functional Consequences of Mutualistic Network Architecture

    Get PDF
    The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks

    The N-Terminus of GalE Induces tmRNA Activity in Escherichia coli

    Get PDF
    BACKGROUND: The tmRNA quality control system recognizes stalled translation complexes and facilitates ribosome recycling in a process termed 'ribosome rescue'. During ribosome rescue, nascent chains are tagged with the tmRNA-encoded SsrA peptide, which targets tagged proteins for degradation. In Escherichia coli, tmRNA rescues ribosomes arrested on truncated messages, as well as ribosomes that are paused during elongation and termination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a new translational pausing determinant that leads to SsrA peptide tagging of the E. coli GalE protein (UDP-galactose 4-epimerase). GalE chains are tagged at more than 150 sites, primarily within distinct clusters throughout the C-terminal domain. These tagging sites do not correspond to rare codon clusters and synonymous recoding of the galE gene had little effect on tagging. Moreover, tagging was largely unaffected by perturbations that either stabilize or destabilize the galE transcript. Examination of GalE-thioredoxin (TrxA) fusion proteins showed that the GalE C-terminal domain is no longer tagged when fused to an N-terminal TrxA domain. Conversely, the N-terminus of GalE induced tagging within the fused C-terminal TrxA domain. CONCLUSIONS/SIGNIFICANCE: These findings suggest that translation of the GalE N-terminus induces subsequent tagging of the C-terminal domain. We propose that co-translational maturation of the GalE N-terminal domain influences ribosome pausing and subsequent tmRNA activity
    corecore