282 research outputs found

    The Effects of Stress at Work and at Home on Inflammation and Endothelial Dysfunction

    Get PDF
    This study examined whether stress at work and at home may be related to dysregulation of inflammation and endothelial function, two important contributors to the development of cardiovascular disease. In order to explore potential biological mechanisms linking stress with cardiovascular health, we investigated cross-sectional associations between stress at work and at home with an inflammation score (n's range from 406–433) and with two endothelial biomarkers (intercellular and vascular adhesion molecules, sICAM-1 and sVCAM-1; n's range from 205–235) in a cohort of healthy US male health professionals. No associations were found between stress at work or at home and inflammation. Men with high or medium levels of stress at work had significantly higher levels of sVCAM-1 (13% increase) and marginally higher levels of sICAM-1 (9% increase), relative to those reporting low stress at work, independent of health behaviors. Men with high levels of stress at home had marginally higher levels of both sVCAM-1 and sICAM-1 than those with low stress at home. While lack of findings related to inflammation are somewhat surprising, if replicated in future studies, these findings may suggest that endothelial dysfunction is an important biological mechanism linking stress at work with cardiovascular health outcomes in men

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    PAAR-repeat proteins sharpen and diversify the Type VI secretion system spike

    Get PDF
    The bacterial type VI secretion system (T6SS) is a large multi-component, dynamic macromolecular machine that plays an important role in the ecology of many Gram negative bacteria. T6SS is responsible for translocation of a wide range of toxic effector molecules allowing predatory cells to kill both prokaryotic as well as eukaryotic prey cells1-5. The T6SS organelle is functionally analogous to contractile tails of bacteriophages and is thought to attack cells by initially penetrating them with a trimeric protein complex called the VgrG spike6,7. Neither the exact protein composition of the T6SS organelle nor the mechanisms of effector selection and delivery are known. Here we report that proteins from the PAAR (Proline-Alanine-Alanine-aRginine) repeat superfamily form a sharp conical extension on the VgrG spike, which is further involved in attaching effector domains to the spike. The crystal structures of two PAAR-repeat proteins bound to VgrG-like partners show that these proteins function to sharpen the tip of the VgrG spike. We demonstrate that PAAR proteins are essential for T6SS- mediated secretion and target cell killing by Vibrio cholerae and Acinetobacter baylyi. Our results suggest a new model of the T6SS organelle in which the VgrG-PAAR spike complex is decorated with multiple effectors that are delivered simultaneously into target cells in a single contraction-driven translocation event

    Mode equivalence and acceptability of tablet computer-, interactive voice response system-, and paper-based administration of the U.S. National Cancer Institute’s Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)

    Get PDF
    Background PRO-CTCAE is a library of items that measure cancer treatment-related symptomatic adverse events (NCI Contracts: HHSN261201000043C and HHSN 261201000063C). The objective of this study is to examine the equivalence and acceptability of the three data collection modes (Web-enabled touchscreen tablet computer, Interactive voice response system [IVRS], and paper) available within the US National Cancer Institute (NCI) Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) measurement system. Methods Participants (n = 112; median age 56.5; 24 % high school or less) receiving treatment for cancer at seven US sites completed 28 PRO-CTCAE items (scoring range 0–4) by three modes (order randomized) at a single study visit. Subjects completed one page (approx. 15 items) of the EORTC QLQ-C30 between each mode as a distractor. Item scores by mode were compared using intraclass correlation coefficients (ICC); differences in scores within the 3-mode crossover design were evaluated with mixed-effects models. Difficulties with each mode experienced by participants were also assessed. Results 103 (92 %) completed questionnaires by all three modes. The median ICC comparing tablet vs IVRS was 0.78 (range 0.55–0.90); tablet vs paper: 0.81 (0.62–0.96); IVRS vs paper: 0.78 (0.60–0.91); 89 % of ICCs were ≥0.70. Item-level mean differences by mode were small (medians [ranges] for tablet vs. IVRS = −0.04 [−0.16–0.22]; tablet vs paper = −0.02 [−0.11–0.14]; IVRS vs paper = 0.02 [−0.07–0.19]), and 57/81 (70 %) items had bootstrapped 95 % CI around the effect sizes within +/−0.20. The median time to complete the questionnaire by tablet was 3.4 min; IVRS: 5.8; paper: 4.0. The proportion of participants by mode who reported “no problems” responding to the questionnaire was 86 % tablet, 72 % IVRS, and 98 % paper. Conclusions Mode equivalence of items was moderate to high, and comparable to test-retest reliability (median ICC = 0.80). Each mode was acceptable to a majority of respondents. Although the study was powered to detect moderate or larger discrepancies between modes, the observed ICCs and very small mean differences between modes provide evidence to support study designs that are responsive to patient or investigator preference for mode of administration, and justify comparison of results and pooled analyses across studies that employ different PRO-CTCAE modes of administration. Trial registration NCT Clinicaltrials.gov identifier: NCT0215863

    Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

    Get PDF
    Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations

    Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico

    Get PDF
    Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen

    Full Sequence and Comparative Analysis of the Plasmid pAPEC-1 of Avian Pathogenic E. coli χ7122 (O78∶K80∶H9)

    Get PDF
    (APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy., are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function

    Effects of acute tryptophan depletion on executive function in healthy male volunteers

    Get PDF
    BACKGROUND: Neurocognitive impairment is frequently described in a number of psychiatric disorders and may be a direct consequence of serotonergic dysfunction. As impairments in executive functions are some of the most frequently described, the purpose of this study was to examine the performance of normal volunteers on a range of executive tasks following a transient reduction of central serotonin (5-HT) levels using the method of acute tryptophan depletion (ATD). METHODS: Fifteen healthy male subjects participated in a within-subject, double-blind, counterbalanced crossover study. ATD was induced by ingestion of a 100 g amino-acid drink. Executive function was evaluated using the Wisconsin Card Sorting Test, Stroop, Verbal Fluency and Trail Making. Visual analogue scales were administered to assess mood. RESULTS: Plasma free and total tryptophan concentrations were significantly reduced by the depleting drink (P < 0.001). ATD selectively improved motor speed/ attention on the Trails A test (P = 0.027), with no effect on subjective ratings of mood. Interaction effects between drink and the order of drink administration were observed on most neurocognitive tests. CONCLUSIONS: The improvement in simple motor speed/ attention following ATD is in keeping with the ascribed role of 5-HT in the cortex, however performance on tests of executive function is not robustly altered. The presence of interaction effects on most tasks suggests that subtle changes may occur but are masked, possibly by simple learning effects, in the context of a crossover design. This has implications for the design of future studies, particularly those examining executive functions

    Agent-Based Model of Therapeutic Adipose-Derived Stromal Cell Trafficking during Ischemia Predicts Ability To Roll on P-Selectin

    Get PDF
    Intravenous delivery of human adipose-derived stromal cells (hASCs) is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific) may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM) of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p, or CD65. In vitro experiments confirmed this prediction; a subpopulation of hASCs slowly rolled on immobilized P-selectin at speeds as low as 2 µm/s. Thus, our work led to a fundamentally new understanding of hASC biology, which may have important therapeutic implications
    corecore