20 research outputs found

    Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea

    Get PDF
    Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions

    Mißbildungen

    No full text

    Immune Players in the CNS:The Astrocyte

    No full text
    <p>In the finely balanced environment of the central nervous system astrocytes, the most numerous cell type, play a role in regulating almost every physiological system. First found to regulate extracellular ions and pH, they have since been shown to regulate neurotransmitter levels, cerebral blood flow and energy metabolism. There is also growing evidence for an essential role of astrocytes in central immunity, which is the topic of this review. In the healthy state, the central nervous system is potently anti-inflammatory but under threat astrocytes readily respond to pathogens and to both sterile and pathogen-induced cell damage. In response, astrocytes take on some of the roles of immune cells, releasing cyto- and chemokines to influence effector cells, modulating the blood-brain barrier and forming glial scars. To date, much of the data supporting a role for astrocytes in immunity have been obtained from in vitro systems; however data from experimental models and clinical samples support the suggestion that astrocytes perform similar roles in more complex environments. This review will discuss some aspects of the role of astrocytes in central nervous system immunity.</p>

    Die Verletzungen des Sehorgans

    No full text

    Regulation of the Inflammatory Response in Brain

    No full text
    corecore