2,993 research outputs found

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    On quiver Grassmannians and orbit closures for representation-finite algebras

    Get PDF
    We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective-injective; its endomorphism ring is called the projective quotient algebra. For any representation- nite algebra, we use the projective quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli, Feigin and Reineke

    Cross-modal working memory binding and L1-L2 word learning

    Get PDF
    The ability to create temporary binding representations of information from different sources in working memory has recently been found to relate to the development of monolingual word recognition in children. The current study explored this possible relationship in an adult word-learning context. We assessed whether the relationship between cross-modal working memory binding and lexical development would be observed in the learning of associations between unfamiliar spoken words and their semantic referents, and whether it would vary across experimental conditions in first- and second-language word learning. A group of English monolinguals were recruited to learn 24 spoken disyllable Mandarin Chinese words in association with either familiar or novel objects as semantic referents. They also took a working memory task in which their ability to temporarily bind auditory-verbal and visual information was measured. Participants’ performance on this task was uniquely linked to their learning and retention of words for both novel objects and for familiar objects. This suggests that, at least for spoken language, cross-modal working memory binding might play a similar role in second language-like (i.e., learning new words for familiar objects) and in more native-like situations (i.e., learning new words for novel objects). Our findings provide new evidence for the role of cross-modal working memory binding in L1 word learning and further indicate that early stages of picture-based word learning in L2 might rely on similar cognitive processes as in L1

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Immunological Monitoring of Renal Transplant Recipients to Predict Acute Allograft Rejection Following the Discontinuation of Tacrolimus

    Get PDF
    Contains fulltext : 69863.pdf (publisher's version ) (Open Access)BACKGROUND: Transplant patients would benefit from reduction of immunosuppression providing that graft rejection is prevented. We have evaluated a number of immunological markers in blood of patients in whom tacrolimus was withdrawn after renal transplantation. The alloreactive precursor frequency of CD4+ and CD8+ T cells, the frequency of T cell subsets and the functional capacity of CD4+CD25+FoxP3+ regulatory T cells (Treg) were analyzed before transplantation and before tacrolimus reduction. In a case-control design, the results were compared between patients with (n = 15) and without (n = 28) acute rejection after tacrolimus withdrawal. PRINCIPAL FINDINGS: Prior to tacrolimus reduction, the ratio between memory CD8+ T cells and Treg was higher in rejectors compared to non-rejectors. Rejectors also had a higher ratio between memory CD4+ T cells and Treg, and ratios <20 were only observed in non-rejectors. Between the time of transplantation and the start of tacrolimus withdrawal, an increase in naive T cell frequencies and a reciprocal decrease of effector T cell percentages was observed in rejectors. The proportion of Treg within the CD4+ T cells decreased after transplantation, but anti-donor regulatory capacity of Treg remained unaltered in rejectors and non-rejectors. CONCLUSIONS: Immunological monitoring revealed an association between acute rejection following the withdrawal of tacrolimus and 1) the ratio of memory T cells and Treg prior to the start of tacrolimus reduction, and 2) changes in the distribution of naive, effector and memory T cells over time. Combination of these two biomarkers allowed highly specific identification of patients in whom immunosuppression could be safely reduced

    InForm software: A semi-Automated research tool to identify presumptive human hepatic progenitor cells, and other histological features of pathological significance

    Get PDF
    Hepatic progenitor cells (HPCs) play an important regenerative role in acute and chronic liver pathologies. Liver disease research often necessitates the grading of disease severity, and pathologists' reports are the current gold-standard for assessment. However, it is often impractical to recruit pathologists in large cohort studies. In this study we utilise PerkinElmer's "InForm" software package to semi-Automate the scoring of patient liver biopsies, and compare outputs to a pathologist's assessment. We examined a cohort of eleven acute hepatitis samples and three non-Alcoholic fatty liver disease (NAFLD) samples, stained with HPC markers (GCTM-5 and Pan Cytokeratin), an inflammatory marker (CD45), Sirius Red to detect collagen and haematoxylin/eosin for general histology. InForm was configured to identify presumptive HPCs, CD45 +ve inflammatory cells, areas of necrosis, fat and collagen deposition (p &lt; 0.0001). Hepatitis samples were then evaluated both by a pathologist using the Ishak-Knodell scoring system, and by InForm through customised algorithms. Necroinflammation as evaluated by a pathologist, correlated with InForm outputs (r 2 = 0.8192, p &lt; 0.05). This study demonstrates that the InForm software package provides a useful tool for liver disease research, allowing rapid, and objective quantification of the presumptive HPCs and identifies histological features that assist with assessing liver disease severity, and potentially can facilitate diagnosis

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication
    • 

    corecore