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InForm software: a semi-
automated research tool to 
identify presumptive human 
hepatic progenitor cells, and other 
histological features of pathological 
significance
Anne S. Kramer1,2,3, Bruce Latham4, Luke A. Diepeveen1, Lingjun Mou5, Geoffrey J. Laurent3, 
Caryn Elsegood   6, Laura Ochoa-Callejero7 & George C. Yeoh   1,2,3

Hepatic progenitor cells (HPCs) play an important regenerative role in acute and chronic liver 
pathologies. Liver disease research often necessitates the grading of disease severity, and pathologists’ 
reports are the current gold-standard for assessment. However, it is often impractical to recruit 
pathologists in large cohort studies. In this study we utilise PerkinElmer’s “InForm” software package 
to semi-automate the scoring of patient liver biopsies, and compare outputs to a pathologist’s 
assessment. We examined a cohort of eleven acute hepatitis samples and three non-alcoholic fatty liver 
disease (NAFLD) samples, stained with HPC markers (GCTM-5 and Pan Cytokeratin), an inflammatory 
marker (CD45), Sirius Red to detect collagen and haematoxylin/eosin for general histology. InForm 
was configured to identify presumptive HPCs, CD45+ve inflammatory cells, areas of necrosis, fat and 
collagen deposition (p < 0.0001). Hepatitis samples were then evaluated both by a pathologist using 
the Ishak-Knodell scoring system, and by InForm through customised algorithms. Necroinflammation 
as evaluated by a pathologist, correlated with InForm outputs (r2 = 0.8192, p < 0.05). This study 
demonstrates that the InForm software package provides a useful tool for liver disease research, 
allowing rapid, and objective quantification of the presumptive HPCs and identifies histological features 
that assist with assessing liver disease severity, and potentially can facilitate diagnosis.

HPCs are a heterogeneous population, expressing immature and intermediate phenotypes of biliary and hepatic 
lineages1. Histologically, they are small ovoid cells with a high nuclear-to-cytoplasmic ratio. They are present 
in the healthy liver at low abundance, residing in the liver stem cell niche termed the “canals of Hering”2,3. The 
phenotype and distribution of HPCs vary according the liver pathophysiology and severity, and known markers 
including Pan Cytokeratin, CK19, NCAM and SOX-9 also stain cholangiocytes4–7. As such, the identification 
of HPCs is challenging, and a reliable method which is capable of identifying and quantifying HPCs of varying 
histological phenotypes is urgently required.
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HPCs play an important role in repair, and have also been correlated with increased severity of chronic liver 
disease as well as development of hepatocellular carcinoma (HCC)8–11. When normal hepatocyte-mediated repair 
pathways are impaired, such as in severe acute or chronic liver disease, HPCs are activated to proliferate and 
differentiate towards hepatocytes and/or cholangiocytes to facilitate repair through regeneration3,10,12. The regula-
tion of HPCs is complex and many cellular and extracellular partners have been identified, including stellate cells, 
macrophages, extracellular matrix and an intricate network of cytokines, adipokines and paracrine factors5,13–15. 
Together, the interactions of HPCs, the extracellular matrix and the associated inflammatory response has been 
termed “ductular reaction” in humans4,16,17, as the proliferation of HPCs is often of ductular phenotype18,19. The 
inflammatory response has a potent influence on HPC activation, and several pro-inflammatory cytokines have 
been shown to increase HPC proliferation12,20–23. The inflammatory environment contributes to tumour progres-
sion, and is associated with a higher risk of recurrence and poor prognosis of HCC, in part through enhanced 
proliferation of HPCs24–26. Like inflammation, the fibrotic response is closely correlated with the HPC prolifera-
tive response in many human liver pathologies including alcoholic- and non-alcoholic fatty liver disease, chronic 
hepatitis and genetic haemochromatosis8,11,27. Fibrogenesis is partly driven by HPCs through the release of 
pro-fibrotic factors which may, in turn, enhance HPC proliferation through positive feedback4,19,28. The effects of 
fatty deposits on HPCs has been less well characterised, but its importance is highlighted by the higher incidence 
of cirrhosis in obese patients, and the increased mortality of obese patients with HCC29,30. HPCs also produce 
cytokines termed ‘adipokines’, which have important roles in metabolic control, inflammation and tissue repair31. 
The levels of adipokines have been correlated with inflammation, fibrosis, and levels of fat and severity of NASH 
in several studies31–33.

Due to the intricate interactions of HPCs with inflammation, fibrosis and fat, HPC research often necessitates 
the assessment of these parameters. Traditionally, assessment by pathologists is the gold-standard approach, and 
many systems to semi-quantitatively score the necroinflammatory activity, fibrosis, and fat have been developed. 
The Ishak’s modification of Knodell’s “hepatic activity index” (referred to here as “Ishak-Knodell”) is a system 
designed for clinical assessment of chronic hepatitis34. The Ishak-Knodell system grades necroinflammatory 
activity using five categories; piecemeal necrosis, confluent necrosis, lobular necrosis and portal inflammation. 
The composite of these categories is then calculated to obtain the hepatic activity index (HAI), which reflects the 
necroinflammatory activity. Fibrosis is assessed using a separate staging category. The Ishak-Knodell, similar to 
other scoring systems, relies on the expertise of pathologists and thus is subjective by nature.

In this study, we have evaluated InForm as an alternative research tool to a pathologist’s assessment. We use 
custom designed algorithms to determine whether InForm can (i) identify and quantitate presumptive HPCs 
comparably to trained investigators (ii) identify histological features including inflammation, fibrosis and fat 
which are important in grading liver disease, and known to influence HPCs, and (iii) score the necroinflamma-
tory activity in acute hepatitis patients consistent with a pathologist’s assessment using the Ishak-Knodell scale.

Results
InForm can be configured to quantitate and phenotype presumptive HPCs.  Custom algorithms 
can be configured to identify and quantify presumptive HPCs stained with two labelling techniques; immunohis-
tochemistry and immunofluorescence. For immunohistochemistry, three normal livers and four livers from the 
hepatitis cohort were stained for Pan Cytokeratin (PCK); a general epithelial stain that cross reacts with a wide 
range of cytokeratins, which have been used as a marker for cholangiocytes and HPCs35–37. InForm was config-
ured to distinguish PCK+ve cells by following PerkinElmer’s workflow to create and verify an algorithm (“PCK 
phenotype IHC algorithm”; see Supplementary Methods Table S1 and Table S2) on fifteen field of views (FOVs) of 
both normal and hepatitis liver. The algorithm correctly identified all PCK+ve cells, and distinguishes these from 
PCK−ve cells based on optical density of DAB (p < 0.0001, Fig. 1A). Additionally, we sought to verify the accuracy 
of InForm by comparing it to manual counting. Fifteen FOVs were first processed with InForm, then counted 
manually by a single blinded investigator. We report a high correlation of InForm’s automated output with manual 
counting (r2 = 0.9202, p < 0.0001, Fig. 1C). Next, we examined whether the algorithm could distinguish ductal 
PCK+ve cells from non-ductal PCK+ve cells. Using Adobe Photoshop, we extracted individual PCK+ve ductal and 
PCK−ve non-ductal cells from the images, analysed these in InForm using the previously created PCK algorithm. 
Ductal cells could be distinguished from non-ductal cells based on parameters including nuclear areas and the 
optical density of hematoxylin and DAB staining (p < 0.0001, Fig. 2). In addition to single-cell analysis, we tested 
whether the algorithms could distinguish ductal PCK+ve cells and non-ductal PCK+ve presumptive HPCs in whole 
FOVs. Sixteen portal FOVs (consisting of predominantly PCK+ve ductal cells) and sixteen central FOVs (pop-
ulated mainly by non-ductal PCK+ve cells) were analysed with InForm. This confirmed that InForm outputs 
consistently assigned ductal cells to portal areas, and non-ductal cells to central regions of the FOVs (p < 0.05, 
Fig. 3A,B and p < 0.001, Fig. 3C).

Next, we evaluated whether InForm can be configured to accurately identify fluorescently double-labelled 
presumptive HPCs. Three normal and three hepatitis livers were stained for two HPC markers (PCK and GCTM-
5). Two FOVs per sample were scored both manually and with InForm software. A high correlation with manual 
counting was reported in both channels, (green: r2 = 0.8850; red: r2 = 0.8893, p < 0.0001, Fig. 4A,B), and with 
double positive cells (r2 = 0.8098, p < 0.0001, Fig. 4C).

Custom algorithms can identify histological features of pathological significance.  InForm can 
also be configured to identify important histological features that assist in the grading of liver disease. The acute 
hepatitis samples were stained in series with CD45 and H&E to identify inflammatory cells and areas of necro-
sis respectively. The NAFLD samples were stained with CD45, Sirius Red and H&E to identify inflammatory 
cells, collagen deposition and areas of fat respectively. Three normal livers were stained and used as controls. 
Histological features were identified and marked by the pathologist (B.L). For each feature at least 10 different 
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areas were used for the creation of each algorithm. Note that each histological feature required the creation and 
verification of a separate algorithm (see Supplementary Methods Tables S1 and S2). Using these algorithms, we 
consistently identified CD45+ve inflammatory cells, and areas of collagen deposition, fat and necrosis, based on 
the optical density of DAB, Sirius Red and haematoxylin respectively (p < 0.0001, Figs 5 and 6).

InForm outputs correlate with Pathologist’s scoring of necroinflammatory activity.  We 
next investigated whether InForm’s output correlated with a pathologist’s assessment of necroinflammatory 
activity. Eleven acute hepatitis samples were scored with the Ishak-Knodell system by a Pathologist (B.L.) (see 
Supplementary Methods Table S3). To assess each category of the Ishak-Knodell system using InForm, we applied 
the algorithms created previously (see Supplementary Methods Table S1 for parameters) in combination with 
processing regions to create a surrogate measure. These surrogate measures were necessary as the Ishak-Knodell 
system provide a descriptive evaluation of the liver mainly in architectural changes (Supplementary Methods 
Table S3). An explanation of the surrogate measures is given in Supplementary Methods Table S4. For all catego-
ries, a higher Ishak-Knodell score (reflecting a more severe pathology) resulted in a significantly higher InForm 
score (p < 0.05, Fig. 7A,D, and p < 0.001, Fig. 7B,C). To obtain the InForm composite score, values from all cat-
egories were added, similar to the HAI. A high correlation between the HAI and the InForm composite score 
was found (r2 = 0.8192, p < 0.05), demonstrating that InForm can be used to generate a score that represents the 
severity of necroinflammatory activity (Fig. 7E).

Discussion
This study establishes InForm as a useful research tool for assessing liver pathology. We demonstrate that cus-
tom algorithms can be designed and used to quantitate ductal PCK+ve cells and non-ductal PCK+ve presumptive 
HPCs, CD45+ve cells, as well as identify areas of fat, necrosis, and collagen deposition. It can produce an objective 
score comparable to Ishak-Knodell’s HAI to represent liver inflammation severity.

InForm can reliably quantitate presumptive HPCs with a high correlation to manual counting using either 
immunohistochemically or immunofluorescently stained samples. Importantly, InForm can also be config-
ured to objectively distinguish ductal cells staining positive for HPC markers from centrally located non-ductal 

Figure 1.  A custom algorithm was created to identify and quantitate PCK+ve cells in immunohistochemically 
stained samples. (A) PCK+ve and PCK−ve cells were distinguished based on DAB levels. (B) Representative 
images of PCK+ve cells (insert 1) and PCK−ve cells (insert 2) are shown. (C) InForm output had a high 
correlation with manual counting (r2 = 0.9202, p < 0.0001, n = 14 FOVs). (D) Comparative images of cells 
counted manually (red indicates PCK+ve cells, green indicates nuclei of cells that are PCK−ve), and with InForm 
(green indicates all nuclei counted by InForm, red indicates PCK+ve nuclei). Scale bar 200 μm. ***p < 0.0001.
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presumptive HPCs; a useful tool for researchers who wish to independently assess the ductal reaction from the 
HPC response38.

The software’s semi-automated batch workflow allowed for rapid and objective processing of samples, in con-
trast to the time-consuming and subjective manual counting of HPCs. Many studies in the literature ascertain the 
HPC response by counting HPCs manually11,23,38–42. We have shown in this study that this process can be reliably 
automated using InForm, to allow for rapid and objective processing of samples. To circumvent manual counting, 
researchers have also utilised various software programs to calculate the area occupied by the cells of interest, 
expressed as a percentage of total tissue37,42. Area calculations on stained tissue may be confounded by several 
factors including tissue distortions due to sinusoidal enlargement, fixation, or surgical artefacts43. In contrast, 
InForm offers a more reliable output (number of positive cells expressed as a percentage of total cells), for which 
we report a higher correlation to manual counting compared to area calculations using Aperio’s ImageScope 
software (see Supplementary Results Fig. S1). It is likely that InForm can identify and quantify any given cell of 
interest in any species, providing an antibody exists to mark it, and/or it has a distinct appearance in a histological 
stain. For instance, we also applied InForm algorithms to mouse studies to accurately quantitate the numbers of 
PCK+ve presumptive HPCs, F4/80+ve macrophages and CD45+ve inflammatory cells (see Supplementary Results 
Fig. S2). Hence, InForm can also be used to study rodent models of HCC.

InForm can also be configured to score inflammatory activity. Algorithms can be customised to score the 
number of inflammatory cells (either single cells or aggregates), within portal or lobular regions or within the 
limiting plates to produce outputs that correlate with Ishak-Knodell scores for portal, lobular or piecemeal necro-
sis respectively. However, we were unable to create an algorithm that recognises inflammatory cells in H&E 
stained samples; CD45 staining was necessary, although conceivably any other stain for inflammatory cells would 
suffice. Areas of necrosis can also be assessed using customised algorithms, with the output correlating with 
Ishak-Knodell scores for confluent necrosis. Importantly, algorithms can be archived and shared among research-
ers, promoting reproducibility and efficiency.

In summary, the InForm software package offers an effective tool for liver researchers studying HPCs in the 
context of inflammation, fibrosis and fat. We propose that InForm can replace not only manual counting of 
HPCs, but also the manual assessment of liver disease in a plethora of studies involving a range of etiologies and 

Figure 2.  A custom algorithm was created to distinguish individual PCK+ve ductal cells from PCK+ve non-
ductal cells in immunohistochemically stained samples. (A–C) Ductal cells have significantly higher nucleus 
area, and higher optical density of hematoxylin and DAB compared to non-ductal cells. (D) Representative 
images of PCK+ve ductal and PCK+ve non-ductal cells. (Di) DAB image. (Dii) Green cells indicates all 
nuclei counted by InForm. (Diii) Red cells indicates PCK+ve cells counted by InForm (iii). Scale bar 20 μm. 
***p < 0.0001.
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models11,12,38,44. The major advantages of InForm include objectivity, reproducibility, efficiency and high through-
put, and it provides a solution to the economical and logistical challenges of involving pathologists in large-scale 
research studies. Using InForm, researchers can produce a single composite score to represent necroinflammatory 
severity, thus providing a useful tool for liver disease research.

Methods
Patient cohort.  This study was approved by the ethics committees of the University College of London, 
University of Queensland, Sir Charles Gairdner Hospital, Metro South Hospital, and the University of Western 
Australia. All methods were carried out in accordance to the guidelines and regulations of these ethics commit-
tees. Informed consent was obtained from patients when required under the relevant ethics regulation, and in 
other cases this was waived by the relevant ethics committee. Formalin-fixed, paraffin-embedded archival liver 
samples were obtained from University College of London, University of Queensland, and Sir Charles Gairdner 
Hospital. We examined cohorts of acute hepatitis (n = 11, classified as either viral, drug induced or autoimmune 
acute hepatitis), non-alcoholic fatty liver disease (NAFLD; n = 3) and normal livers (n = 5) as controls. See 
Supplementary Methods Table S6 for cohort information.

Immunohistochemistry.  Serial sections of liver biopsies (4 μm thick) were mounted on positively charged 
microscope slides. Sections were dewaxed, rehydrated, and submerged into pre-heated (98 °C) antigen-retrieval 
citrate buffer (10 mM, pH6.0) for 30 min, followed by a further 20 min incubation at room temperature. 

Figure 3.  The custom-designed PCK algorithm can determine whether an entire FOV predominantly consists 
of ductal or non-ductal PCK+ve cells. (A–C) Portal FOVs have significantly higher nucleus area, and higher 
optical density of hematoxylin and DAB. (D) Representative images of portal and central FOVs, with red nuclei 
indicating PCK+ve cells counted by InForm. n = 16 FOVs per group. Scale bar 100 μm. *p < 0.05, **p < 0.001.
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Figure 4.  A custom algorithm was created to quantitate the number of PCK+ve and GCTM-5+ve cells stained 
using double immunofluorescence labelling. (Ai–Bi) InForm outputs had a high correlation compared to 
manual counting in both channels (r2 = 0.8850 and r2 = 0.8893, p < 0.0001. (Ci) Double positive cells also 
have a high correlation with manual counting (r2 = 0.8098, p < 0.0001). (Aii–Cii) Comparative images of cells 
counted manually and with InForm are shown. For manual counts, green dots indicate PCK+ve cells, red dots 
indicate GCTM-5+ve cells, yellow dots indicate PCK+ve/GCTM-5+ve cells and white dots indicate nuclei of cells 
that negative. For InForm counts, PCK+ve, GCTM-5+ve, double positive cells and double negative are shown in 
green, red, yellow and blue respectively. n = 12 FOVs.

Figure 5.  Custom algorithms were created to identify histological features of pathological significance. (A) 
CD45+ve inflammatory cells have higher optical density of DAB compared to CD45−ve cells. (B) Areas with 
collagen deposition have higher optical density of Sirius Red compared to collagen free areas. (C,D) Necrotic 
areas and fatty areas have lower optical density of hematoxylin compared to parenchyma lacking these features. 
For (B–D), ten FOVs from each sample was used for analysing fibrotic, fatty and necrotic areas, and compared 
to ten FOVs of parenchyma lacking these features. ***p < 0.0001.
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Endogenous peroxidase activity was quenched by treating with 3% H202 for 10 min, followed by the application 
of DAKO’s biotin blocking system (DAKO, Cat.X0590) and then serum-free protein block (Dako, Cat.X0909) as 
per the manufacturer’s instruction. The primary antibody was applied overnight at 4 °C (PCK; DAKO, Cat.Z0622, 
1:800 dilution or CD45; DAKO, Cat.M0701, 1:50 dilution). Note that primary antibodies were diluted in antibody 
diluent (Dako, Cat S2022). Staining was detected with the LSAB+ kit (Dako, Cat.K0690) and visualized with 
DAB + substrate (Dako, Cat.K0690) as per manufacturer’s instructions. Slides were counterstained with Harris’ 
hematoxylin, dehydrated and mounted using DPX mounting medium. Positive controls (normal livers with bile 
ducts) and negative controls for antigen, primary and secondary antibodies were included for all immunohisto-
chemical experiments.

Figure 6.  Custom algorithms can identify histological features of pathological significance. Both inflammatory 
foci (A) and individual inflammatory cells (B) can be identified using InForm, which is necessary in order 
to score piecemeal, lobular and portal inflammation on the Ishak-Knodell scale. Areas of fat (C), collagen 
deposition (D) and areas of confluent necrosis (E) can also be identified using InForm algorithms. The original 
images are shown in (i), and the InForm mark-ups are shown in (ii) and (iii). Green indicates cells/areas that are 
negative for feature of interest, and pink/red indicates positive cells/areas. Scale bar 100 μm.
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Double labelling indirect immunofluorescence.  Samples were dewaxed, rehydrated, antigen retrieved 
and blocked as per immunohistochemical protocol. The primary antibodies were applied overnight at 4 °C (PCK; 
DAKO, Cat.Z0622, 1:600 dilution and GCTM-5; Millipore Cat.MAB4365, 1:100 dilution). Staining was detected 
with Alexa Fluor® dyes goat anti rabbit AF488 and goat anti mouse AF594 (Life Technologies, Cat.A11005 and 
Cat.A11008, 1:400). Note that all antibodies were diluted in DAKO’s antibody diluent (Dako, Cat S2022). Samples 
were counterstained with DAPI and sealed by a coverslip using an aqueous mounting media (Gelvatol). Positive 
controls (normal livers with bile ducts) and negative controls for antigen, primary and secondary antibodies were 
included for all immunofluorescence experiments.

Histological stains.  Samples were dewaxed and rehydrated as per immunohistochemical protocol described 
above. For H&E, a regressive hematoxylin (Harris’ modified hematoxylin, Sigma, Cat.HHS128) and Eosin Y 
(Sigma, Cat.230251) protocol was performed. In brief, slides were submerged in hematoxylin for 80 sec, followed 
by a 3 sec submersion into 1% acid alcohol solution, and 2 min incubation in Scott’s tap water (pH8.0). For Sirius 
Red, samples were submerged in Picro’s Sirius Red (Abcam, Cat.ab150681) for 1 h, followed by a 1 min 0.1 N HCl 
wash. Slides were dehydrated and mounted using DPX.

Image acquisition & processing.  All samples were scanned at 20x-magnification using the 
Aperio Scanscope XT. ImageScope (v12.0.0.5) was used to view images and extract at least 15 FOVs (at 
20x-magnification) per sample, depending on the size of the biopsy. Extracts were saved as TIFF files. For ver-
ification of algorithms, images were pre-processed with Adobe Photoshop (CS3, V10.0) to outline and crop 
the cell/area of interest, then exported as TIFF files and imported into InForm (v2.0.4743.16069). For all other 
applications, TIFF files were directly imported into InForm for analysis. Algorithms were created according to 
parameters shown in Supplementary Methods Table S1, and verified (see Supplementary Methods Table S2 for 
workflow). Data was exported as.txt files and imported into Microsoft Excel. For pixel counting using Aperio 
ImageScope, see Supplementary Methods and Supplementary Methods Table S5.

Manual counting and scoring using Ishak-Knodell.  For manual counting of PCK+ve and GCTM-5+ve 
HPCs, TIFF images were exported into ImageJ (v1.51 h, Java1.8.0_66). The cell counter plugin was used to keep 
track of counted cells and the data was exported into Excel. All manual counting was performed blind, by a single 
investigator for consistency purposes. For scoring of the liver biopsies, H&E stained samples were provided for 
assessment to Pathologist B.L., whom identified areas of fat, fibrosis and inflammation and scored samples using 
the Ishak-Knodell system (see Supplementary Methods Table S3).

Data availability.  The datasets analysed during the current study are available from the corresponding 
author on reasonable request.

Figure 7.  InForm outputs correlate with Ishak-Knodell scores assessing necroinflammatory activity. (A–D) For 
all categories, a higher Ishak-Knodell score (indicative of a more severe pathology) resulted in a significantly 
higher InForm score. (E) To obtain the InForm composite, values from all categories were added. A high 
correlation between the HAI and the InForm composite score is evident (r2 = 0.8192, p < 0.05). *p < 0.05, 
**p < 0.001.
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