1,241 research outputs found

    Impact of Mobile Text Reminders on Medication Compliance

    Get PDF
    Purpose/Background Patient noncompliance with medication leads to longer and more frequent infections and health issues. Using mobile reminders, patients can be prompted to take their medication, schedule their followup appointments, or fill their prescription to encourage compliance and better overall health. Methods A search of PubMed, LibKey, and EBSCO was conducted. Articles reviewed included meta-analysis, randomized controlled trials, and systematic reviews in the use of mobile reminders on patient compliance, specifically in medication adherence. Then, we reviewed the article methods and outcomes across various health issues addressed. The articles were then reviewed for criteria such as population size, length of study, and health issues addressed before being recorded to a spreadsheet for further analysis. Results The articles included 4 randomized controlled trials, 2 clinical trials, and 1 systematic review. Per the articles, the most effective methods to increase the rate of compliance are behavior change techniques, improving general T2DM care, providing evidence-based informational leaflets about direct reminders to patients, incorporating direct reminder systems into primary care appointments, and adding a point-of-care reminder to the electronic medical record. Interventions that did not improve adherence were financial incentives and printed reminders to the PCPs. Implications for Nursing Practice Further studies are needed, especially with longer length of study, the results tend to be beneficial. Selected studies showed that there was at least some degree of improvement in patient compliance though not all were able to say there was a positive effect on long term health. These results are promising and promote continued research on implementing technology to improve health outcomes

    Surveillance of the short-term impact of fine particle air pollution on cardiovascular disease hospitalizations in New York State

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have shown that the effects of particulate matter on health vary based on factors including the vulnerability of the population, health care practices, exposure factors, and the pollutant mix.</p> <p>Methods</p> <p>We used time-stratified case-crossover to estimate differences in the short-term impacts of PM<sub>2.5 </sub>on cardiovascular disease hospital admissions in New York State by geographic area, year, age, gender, co-morbid conditions, and area poverty rates.</p> <p>Results</p> <p>PM<sub>2.5 </sub>had a stronger impact on heart failure than other cardiovascular diagnoses, with 3.1% of heart failure admissions attributable to short-term PM<sub>2.5 </sub>exposure over background levels of 5 ug/m<sup>3</sup>. Older adults were significantly more susceptible to heart failure after short-term ambient PM<sub>2.5 </sub>exposure than younger adults.</p> <p>Conclusion</p> <p>The short-term impact of PM<sub>2.5 </sub>on cardiovascular disease admissions, and modifications of that impact, are small and difficult to measure with precision. Multi-state collaborations will be necessary to attain more precision to describe spatiotemporal differences in health impacts.</p

    A Random shRNA-Encoding Library for Phenotypic Selection and Hit-Optimization

    Get PDF
    RNA interference (RNAi) is a mechanism for inhibiting gene expression through the action of small, non-coding RNAs. Most existing RNAi libraries target single genes through canonical pathways. Endogenous microRNAs (miRNAs), however, often target multiple genes and can act through non-canonical pathways, including pathways that activate gene expression. To interrogate all possible functions, we designed, synthesized, and validated the first shRNA-encoding library that is completely random at the nucleotide level. Screening in an IL3-dependent cell line, FL5.12, yielded shRNA-encoding sequences that double cell survival upon IL3 withdrawal. Using random mutagenesis and re-screening under more stringent IL3-starvation conditions, we hit-optimized one of the sequences; a specific nucleotide change and the creation of a mismatch between the two halves of the stem both contributed to the improved potency. Our library allows unbiased selection and optimization of shRNA-encoding sequences that confer phenotypes of interest, and could be used for the development of therapeutics and tools in many fields of biology

    Highly Efficient Amplification of Chronic Wasting Disease Agent by Protein Misfolding Cyclic Amplification with Beads (PMCAb)

    Get PDF
    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility

    The dynamics and efficacy of antiviral RNA silencing: A model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression.</p> <p>Results</p> <p>We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios.</p> <p>Conclusion</p> <p>The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.</p

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter
    corecore