132 research outputs found

    General lack of global dosage compensation in ZZ/ZW systems? Broadening the perspective with RNA-seq

    Get PDF
    Background Species with heteromorphic sex chromosomes face the challenge of large-scale imbalance in gene dose. Microarray-based studies in several independent male heterogametic XX/XY systems suggest that dosage compensation mechanisms are in place to mitigate the detrimental effects of gene dose differences. However, recent genomic research on female heterogametic ZZ/ZW systems has generated surprising results. In two bird species and one lepidopteran no evidence for a global dosage compensating mechanism has been found. The recent advent of massively parallel RNA sequencing now opens up the possibility to gauge the generality of this observation with a broader phylogenetic sampling. It further allows assessing the validity of microarray-based inference on dosage compensation with a novel technology. Results We here expemplify this approach using massively parallel sequencing on barcoded individuals of a bird species, the European crow (Corvus corone), where previously no genetic resources were available. Testing for Z-linkage with quantitative PCR (qPCR,) we first establish that orthology with distantly related species (chicken, zebra finch) can be used as a good predictor for chromosomal affiliation of a gene. We then use a digital measure of gene expression (RNA-seq) on brain transcriptome and confirm a global lack of dosage compensation on the Z chromosome. RNA-seq estimates of male-to-female (m:f) expression difference on the Z compare well to previous microarray-based estimates in birds and lepidopterans. The data further lends support that an up-regulation of female Z-linked genes conveys partial compensation and suggest a relationship between sex-bias and absolute expression level of a gene. Correlation of sex-biased gene expression on the Z chromosome across all three bird species further suggests that the degree of compensation has been partly conserved across 100 million years of avian evolution. Conclusions This work demonstrates that the study of dosage compensation has become amenable to species where previously no genetic resources were available. Massively parallele transcriptome sequencing allows re-assessing the degree of dosage compensation with a novel tool in well-studies species and, in addition, gain valuable insights into the generality of mechanisms across independent taxonomic group for both the XX/XY and ZZ/ZW system

    Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus

    Get PDF
    Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application

    Get PDF
    CdS/ZnO nanorods composite nanofilms were successfully synthesized via hydrothermal method on indium doped tin oxide glass substrates. Sequentially deposited CdS formed cauliflower like nanostructures on vertically aligned ZnO nanorods. The morphological, compositional, structural and optical properties of the films were characterized by field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction and ultraviolet–visible spectroscopy. Photoelectrochemical conversion efficiencies were evaluated by photocurrent measurements in a mixture of Na2S and Na2SO3 akaline aqueous solution. The amount of deposit, as well as the diameter and crystallinity of the CdS cauliflower were found to increase with growth time. CdS/ZnO nanorods composite exhibited greater photocurrent response than ZnO nanorod arrays. Besides, the composite film with 90 min of growth duration displayed the highest photocurrent density which is nearly four times greater than plain ZnO nanorods under the illumination of halogen light. The result exhibited remarkable photoconversion efficiency (η) of 1.92 %

    Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at √(s)=7  TeV

    Get PDF
    Measurements of the normalized rapidity (y) and transverse-momentum (qT) distributions of Drell–Yan muon and electron pairs in the Z-boson mass region (60<Mℓℓ<120  GeV) are reported. The results are obtained using a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS experiment at the Large Hadron Collider (LHC), corresponding to an integrated luminosity of 36  pb-1. The distributions are measured over the ranges |y|<3.5 and qT<600  GeV and compared with quantum chromodynamics (QCD) calculations using recent parton distribution functions to model the momenta of the quarks and gluons in the protons. Overall agreement is observed between the models and data for the rapidity distribution, while no single model describes the Z transverse-momentum distribution over the full range

    Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV

    Get PDF
    A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range vertical bar eta vertical bar < 2.5 and the transverse energy range 25 < E-T < 400 GeV, corresponding to the kinematic region 0.007 < x(T) < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of E-T in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section

    Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    Get PDF
    This is the Pre-Print version of the Article - Copyright @ 2011 APSA multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model

    Search for new physics with a monojet and missing transverse energy in pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the Published Article which can be accessed at the link below.A study of events with missing transverse energy and an energetic jet is performed using pp collision data at a center-of-mass energy of 7 TeV. The data were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 36  pb-1. An excess of these events over standard model contributions is a signature of new physics such as large extra dimensions and unparticles. The number of observed events is in good agreement with the prediction of the standard model, and significant extension of the current limits on parameters of new physics benchmark models is achieved
    • 

    corecore