191 research outputs found

    Application of Bayesian statistics to estimate nitrous oxide emission factors of the nitrogen fertilisers in UK grasslands

    Get PDF
    Trapezoidal integration by linear interpolation of data points is by far the most commonly used method of cumulative flux calculations of nitrous oxide (N2O) in studies that use flux chambers; however, this method is incapable of providing accurate uncertainty estimates. A Bayesian approach was used to calculate N2O emission factors (EFs) and their associated uncertainties from flux chamber measurements made after the application of nitrogen fertilisers, in the form of ammonium nitrate (AN), urea (Ur) and urea treated with Agrotain® urease inhibitor (UI) at four grassland sites in the UK. The comparison between the cumulative fluxes estimated using the Bayesian and linear interpolation methods were broadly similar (R2=0.79); however, the Bayesian method was capable of providing realistic uncertainties when a limited number of data points is available. The study reports mean EF values (and 95% confidence intervals) of 0.60 ± 0.63, 0.29 ± 0.22 and 0.26 ± 0.17% of applied N emitted as N2O for the AN, Ur and UI treatments, respectively. There was no significant difference between N2O emissions from the Ur and UI treatments. In the case of the automatic chamber data collected at one site in this study, the data did not fit the log-normal model, implying that more complex models may be needed, particularly for measurement data with high temporal resolutioninfo:eu-repo/semantics/publishedVersio

    Theoretical overview on high-energy emission in microquasars

    Get PDF
    Microquasar (MQ) jets are sites of particle acceleration and synchrotron emission. Such synchrotron radiation has been detected coming from jet regions of different spatial scales, which for the instruments at work nowadays appear as compact radio cores, slightly resolved radio jets, or (very) extended structures. Because of the presence of relativistic particles and dense photon, magnetic and matter fields, these outflows are also the best candidates to generate the very high-energy (VHE) gamma-rays detected coming from two of these objects, LS 5039 and LS I +61 303, and may be contributing significantly to the X-rays emitted from the MQ core. In addition, beside electromagnetic radiation, jets at different scales are producing some amount of leptonic and hadronic cosmic rays (CR), and evidences of neutrino production in these objects may be eventually found. In this work, we review on the different physical processes that may be at work in or related to MQ jets. The jet regions capable to produce significant amounts of emission at different wavelengths have been reduced to the jet base, the jet at scales of the order of the size of the system orbital semi-major axis, the jet middle scales (the resolved radio jets), and the jet termination point. The surroundings of the jet could be sites of multiwavelegnth emission as well, deserving also an insight. We focus on those scenarios, either hadronic or leptonic, in which it seems more plausible to generate both photons from radio to VHE and high-energy neutrinos. We briefly comment as well on the relevance of MQ as possible contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the conference: The multimessenger approach to the high-energy gamma-ray sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables (one reference corrected

    Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S

    Get PDF
    We report the discovery of very-high-energy (VHE) gamma-ray emission of the binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive, luminous Be star in a highly eccentric orbit. The observations around the 2004 periastron passage of the pulsar were performed with the four 13 m Cherenkov telescopes of the H.E.S.S. experiment, recently installed in Namibia and in full operation since December 2003. Between February and June 2004, a gamma-ray signal from the binary system was detected with a total significance above 13 sigma. The flux was found to vary significantly on timescales of days which makes PSR B1259-63 the first variable galactic source of VHE gamma-rays observed so far. Strong emission signals were observed in pre- and post-periastron phases with a flux minimum around periastron, followed by a gradual flux decrease in the months after. The measured time-averaged energy spectrum above a mean threshold energy of 380 GeV can be fitted by a simple power law F_0(E/1 TeV)^-Gamma with a photon index Gamma = 2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys) 10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous evidence for particle acceleration to multi-TeV energies in the binary system. In combination with coeval observations of the X-ray synchrotron emission by the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to be produced by the inverse Compton mechanism, the magnetic field strength can be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June 2005, replace: document unchanged, replaced author field in astro-ph entry - authors are all members of the H.E.S.S. collaboration and three additional authors (99+3, see document

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    New measurement of the 242Pu(n,Îł) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR

    Get PDF
    The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters

    The measurement programme at the neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Get PDF
    The neutron capture cross section of 58 Ni was measured at the neutron time of flight facility n-TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of ÎşT = 5 - 100 keV, and their astrophysical implications were investigated

    GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF

    Get PDF
    The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a natC sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured natC yield has been discovered, which prevents the use of natC data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements
    • …
    corecore