257 research outputs found

    Electromagnetic Neutrino Properties and Neutrino Oscillations in Electromagnetic Fields

    Get PDF
    The presence of medium and external magnetic field change electromagnetic properties of neutrino. In this article the behavior of neutrino magnetic moment in electromagnetic field is considered. On the basis the Bargmann-Michel-Telegdi equation for the case of models with CP invariance and P nonconservation the new type of neutrino resonances νLνR\nu_L \leftrightarrow \nu_R in the electromagnetic field is predicted.Comment: 6 page

    NIR Microscopy Possibilities for the Visualization of Silicon Microelectronic Structure Topology through the Substrate

    Get PDF
    AbstractExperimental setup based on visible and NIR spectral range microscope with laser port and picosecond laser is developed for silicon integrated circuit (IC) failure analysis. The possibility of visualizing the topology of the submicron technology silicon structures from the back side of the crystal through the substrate is shown. Main features of new setup are demonstrated by some results of backside focused pulsed laser beam initiated latchup effect study. The possibility of the localization of the latchup sensitive areas under focused laser irradiation is shown. NIR light emission accompanying the latchup effect is observed and analyzed. The practical aspects of NIR microscopy for failure analysis under backside laser irradiation are discussed

    Search for Solar Axions Produced by Primakoff Conversion Using Resonant Absorption by 169^{169}Tm Nuclei

    Get PDF
    The search for resonant absorption of the Primakoff solar axions by 169^{169}Tm nuclei have been performed. Such an absorption should lead to the excitation of low-lying nuclear energy level: A+169A+^{169}Tm 169\to ^{169}Tm^* 169\to ^{169}Tm+γ + \gamma (8.41 keV). The Si(Li) detector and 169^{169}Tm target placed inside the low-background setup were used for that purpose. As a result, a new restriction on the axion-photon coupling and axion mass was obtained: gAγ(GeV1)mA(eV)1.36105g_{A\gamma}({GeV}^{-1})\cdot m_A(eV)\leq1.36\cdot10^{-5} (90% c.l.). In model of hadronic axion this restriction corresponds to the upper limit on axion mass - mAm_A\leq 191 eV for 90% c.l.Comment: 6 pages, 5 figures, submitted to Physics Letters

    The hyperfine transition in light muonic atoms of odd Z

    Full text link
    The hyperfine (hf) transition rates for muonic atoms have been re-measured for select light nuclei, using neutron detectors to evaluate the time dependence of muon capture. For 19^{19}F Λ\Lambdah_{h} = 5.6 (2) μ\mus1^{-1} for the hf transition rate, a value which is considerably more accurate than previous measurements. Results are also reported for Na, Al, P, Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys. Rev.

    Josephson dynamics for coupled polariton modes under the atom-field interaction in the cavity

    Full text link
    We consider a new approach to the problem of Bose-Einstein condensation (BEC) of polaritons for atom-field interaction under the strong coupling regime in the cavity. We investigate the dynamics of two macroscopically populated polariton modes corresponding to the upper and lower branch energy states coupled via Kerr-like nonlinearity of atomic medium. We found out the dispersion relations for new type of collective excitations in the system under consideration. Various temporal regimes like linear (nonlinear) Josephson transition and/or Rabi oscillations, macroscopic quantum self-trapping (MQST) dynamics for population imbalance of polariton modes are predicted. We also examine the switching properties for time-averaged population imbalance depending on initial conditions, effective nonlinear parameter of atomic medium and kinetic energy of low-branch polaritons.Comment: 10 pages, 6 postscript figures, uses svjour.cl

    Abstract kinetic equations with positive collision operators

    Full text link
    We consider "forward-backward" parabolic equations in the abstract form Jdψ/dx+Lψ=0Jd \psi / d x + L \psi = 0, 0<x<τ 0< x < \tau \leq \infty, where JJ and LL are operators in a Hilbert space HH such that J=J=J1J=J^*=J^{-1}, L=L0L=L^* \geq 0, and kerL=0\ker L = 0. The following theorem is proved: if the operator B=JLB=JL is similar to a self-adjoint operator, then associated half-range boundary problems have unique solutions. We apply this theorem to corresponding nonhomogeneous equations, to the time-independent Fokker-Plank equation μψx(x,μ)=b(μ)2ψμ2(x,μ) \mu \frac {\partial \psi}{\partial x} (x,\mu) = b(\mu) \frac {\partial^2 \psi}{\partial \mu^2} (x, \mu), 0<x<τ 0<x<\tau, μR \mu \in \R, as well as to other parabolic equations of the "forward-backward" type. The abstract kinetic equation Tdψ/dx=Aψ(x)+f(x) T d \psi/dx = - A \psi (x) + f(x), where T=TT=T^* is injective and AA satisfies a certain positivity assumption, is considered also.Comment: 20 pages, LaTeX2e, version 2, references have been added, changes in the introductio

    Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization

    Full text link
    Single crystalline films of bismuth-substituted ferrite garnets have been synthesized by the liquid phase epitaxy method where GGG substrates are dipped into the flux. The growth parameters are controlled to obtain films with in-plane magnetization and virtually no domain activity, which makes them excellently suited for magnetooptic imaging. The Faraday rotation spectra were measured across the visible range of wavelengths. To interprete the spectra we present a simple model based on the existence of two optical transitions of diamagnetic character, one tetrahedral and one octahedral. We find excellent agreement between the model and our experimental results for photon energies between 1.77 and 2.53 eV, corresponding to wavelengths between 700 and 490 nm. It is shown that the Faraday rotation changes significantly with the amount of substituted gallium and bismuth. Furthermore, the experimental results suggest that the magnetooptic response changes linearly with the bismuth substitution.Comment: 15 pages, 6 figures, published in Phys. Rev.

    Limits on different Majoron decay modes of 100^{100}Mo and 82^{82}Se for neutrinoless double beta decays in the NEMO-3 experiment

    Full text link
    The NEMO-3 tracking detector is located in the Fr\'ejus Underground Laboratory. It was designed to study double beta decay in a number of different isotopes. Presented here are the experimental half-life limits on the double beta decay process for the isotopes 100^{100}Mo and 82^{82}Se for different Majoron emission modes and limits on the effective neutrino-Majoron coupling constants. In particular, new limits on "ordinary" Majoron (spectral index 1) decay of 100^{100}Mo (T1/2>2.71022T_{1/2} > 2.7\cdot10^{22} y) and 82^{82}Se (T1/2>1.51022T_{1/2} > 1.5\cdot10^{22} y) have been obtained. Corresponding bounds on the Majoron-neutrino coupling constant are <(0.41.9)104 < (0.4-1.9) \cdot 10^{-4} and <(0.661.7)104< (0.66-1.7) \cdot 10^{-4}.Comment: 23 pages includind 4 figures, to be published in Nuclear Physics

    Technical design and performance of the NEMO3 detector

    Full text link
    The development of the NEMO3 detector, which is now running in the Frejus Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun more than ten years ago. The NEMO3 detector uses a tracking-calorimeter technique in order to investigate double beta decay processes for several isotopes. The technical description of the detector is followed by the presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author: Corinne Augier ([email protected]

    Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    Full text link
    The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy
    corecore