150 research outputs found
Photon-stimulated recombination of self-trapped holes with electrons in pre-irradiated solid Ar
Spatially separated stable charge centers – trapped electrons and self-trapped holes – are generated
in Ar cryocrystals by a low-energy electron beam. A combination of the cathodoluminescence
and photon-stimulated luminescence methods has been used to probe recombination reactions.
Photon-stimulated vacuum ultraviolet intrinsic recombination luminescence from pre-irradiated
solid Ar was detected for the first time. The 1.96 eV laser light has been demonstrated to release
electrons from their traps that gives rise to the well-known M-band at 9.8 eV. Additional information
on the photostability of charge centers at low temperatures has been obtained
Stimulated by laser light exoelectron emission from solid Ar pre-irradiated by an electron beam
Spatially separated stable charge centers, self-trapped holes and trapped electrons, were generated in Ar
cryocrystals by a low-energy electron beam. A combination of the cathodoluminescence (CL) and photon-
stimulated exoelectron emission (PSEE) methods was used to monitor center formation and selected relaxation
channel – exoelectron emission. It was found that photon-promoted electron current decreased exponentially
under irradiation with the laser operating in the visible range. Influence of the laser parameters
(power and wavelength) on the characteristic lifetime of exoelectron emission is discussed. Effective
bleaching of the low-temperature peaks of thermally stimulated exoelectron emission by the laser light in a
visible range was observed
Oxygen-driven relaxation processes in pre-irradiated Ar cryocrystals
Relaxation processes in oxygen-containing Ar cryocrystals pre-irradiated by low-energy electrons
are studied with the focus on the role of diffusion controlled atom-atom recombination reaction
of oxygen in the relaxation cascades. The results of correlated in real time measurements of
thermally stimulated phenomena are presented. The experiments have been performed using activation
spectroscopy methods — thermally stimulated exoelectron emission and spectrally resolved
thermally stimulated luminescence. Solid evidence of the radiative mechanism of electron detrapping
triggering the relaxation cascades is obtained
Visualization of metasurface eigenmodes with magnetic resonance imaging
The ability to control the electromagnetic near field with metasurfaces offers potential applications over the frequency range from radio frequency to optical domains. In this work, we show an essential feature of metasurfaces, subwavelength field confinement via excitation of a large number of eigenstates in a narrow frequency range, and demonstrate an innovative way of visualizing profiles of metasurface eigenmodes with the aid of a magnetic resonance imaging (MRI) system. We show that by tuning different eigenmodes of the metasurface to the Larmor frequency, we can passively tailor the near-field distribution to adjust the desired pattern of radio-frequency excitation in a MRI experiment. Our work demonstrates a practical nonperturbed rapid way of imaging metasurface eigenmodes
Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight
The first flight of the Antarctic Impulsive Transient Antenna (ANITA)
experiment recorded 16 radio signals that were emitted by cosmic-ray induced
air showers. For 14 of these events, this radiation was reflected from the ice.
The dominant contribution to the radiation from the deflection of positrons and
electrons in the geomagnetic field, which is beamed in the direction of motion
of the air shower. This radiation is reflected from the ice and subsequently
detected by the ANITA experiment at a flight altitude of 36km. In this paper,
we estimate the energy of the 14 individual events and find that the mean
energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we
calculate its exposure for ultra-high energy cosmic rays. We estimate for the
first time the cosmic-ray flux derived only from radio observations. In
addition, we find that the Monte Carlo simulation of the ANITA data set is in
agreement with the total number of observed events and with the properties of
those events.Comment: Added more explanation of the experimental setup and textual
improvement
Temporal evolution of solar energetic particle spectra
During solar flares and coronal mass ejections, solar energetic par- ticles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this paper we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an “arch” shape which then straightens into a power law later in the event, after times of the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution
Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory
From direct observations of the longitudinal development of ultra-high energy
air showers performed with the Pierre Auger Observatory, upper limits of 3.8%,
2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray
photons above 2, 3, 5 and 10 EeV (1 EeV = 10^18 eV) respectively. These are the
first experimental limits on ultra-high energy photons at energies below 10
EeV. The results complement previous constraints on top-down models from array
data and they reduce systematic uncertainties in the interpretation of shower
data in terms of primary flux, nuclear composition and proton-air
cross-section.Comment: 20 pages, 7 figures, 2 tables. Minor changes. Accepted by
Astroparticle Physic
Ion-beam excitation of liquid argon
The scintillation light of liquid argon has been recorded wavelength and time resolved with very good statistics in a wavelength interval ranging from 118 nm through 970 nm. Three different ion beams, protons, sulfur ions and gold ions, were used to excite liquid argon. Only minor differences were observed in the wavelength-spectra obtained with the different incident particles. Light emission in the wavelength range of the third excimer continuum was found to be strongly suppressed in the liquid phase. In time-resolved measurements, the time structure of the scintillation light can be directly attributed to wavelength in our studies, as no wavelength shifter has been used. These measurements confirm that the singlet-to-triplet intensity ratio in the second excimer continuum range is a useful parameter for particle discrimination, which can also be employed in wavelength-integrated measurements as long as the sensitivity of the detector system does not rise steeply for wavelengths longer than 190 nm. Using our values for the singlet-to-triplet ratio down to low energies deposited a discrimination threshold between incident protons and sulfur ions as low as ∼2.5 keV seems possible, which represents the principle limit for the discrimination of these two species in liquid argon
- …