605 research outputs found

    First light of the VLT planet finder SPHERE. I. Detection and characterization of the sub-stellar companion GJ 758 B

    Get PDF
    GJ758 B is a brown dwarf companion to a nearby (15.76 pc) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (~600K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the VLT. The data was obtained in Y-, J-, H-, and Ks-bands with the dual-band imaging (DBI) mode of IRDIS, providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new 8 photometric points for an extended comparison of GJ758 B with empirical objects and 4 families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison object can accurately represent the observed near-IR fluxes of GJ758 B. From comparison to atmospheric models, we attribute a Teff = 600K ±\pm 100K, but we find that no atmospheric model can adequately fit all the fluxes of GJ758 B. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches, Least-Square Monte Carlo and Markov Chain Monte Carlo. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU. [abridged]Comment: 20 pages, 15 figures. Accepted for publication in A&

    High-contrast spectroscopy of SCR J1845-6357 B

    Full text link
    Spectral characterization of sub-stellar companions is essential to understand their composition and formation processes. However, the large contrast ratio of the brightness of each object to that of its parent star limits our ability to extract a clean spectrum, free from any significant contribution from the star. During the development of the long slit spectroscopy (LSS) mode of IRDIS, the dual-band imager and spectrograph of SPHERE, we proposed a data analysis method to estimate and remove the contributions of the stellar spectrum. This method has never been tested on real data because of the lack of instrumentation capable of combining adaptive optics (AO), coronagraphy, and LSS. Nonetheless, a similar attenuation of the star can be obtained using a particular observing configuration. Test data were acquired using the AO-assisted spectrograph VLT/NACO. We obtained new J- and H-band spectra of SCR J1845-6357 B, a T6 companion to a nearby (3.85\pm0.02 pc) M8 star. This system is a well-suited benchmark as it is relatively wide (~1.0") with a modest contrast ratio (~4 mag), and a previously published JHK spectrum is available for reference. We demonstrate that (1) our method is efficient at estimating and removing the stellar contribution, (2) it allows to properly recover the spectral shape of the companion, and (3) it is essential to obtain an unbiased estimation of physical parameters. We also show that the slit configuration associated with this method allows us to use long exposure times with high throughput producing high signal-to-noise ratio data. However, the signal of the companion gets over-subtracted, particularly in our J-band data, compelling us to use a fake companion spectrum to estimate and compensate for the loss of flux. Finally, we report a new astrometric measurement of the position of the companion (sep = 0.817", PA = 227.92 deg).Comment: 11 pages, 8 figures, 4 tables. Accepted for publication in A&

    Apodization in high-contrast long-slit spectroscopy. Closer, deeper, fainter, cooler

    Full text link
    The spectroscopy of faint planetary-mass companions to nearby stars is one of the main challenges that new-generation high-contrast spectro-imagers are going to face. In a previous work we presented a long slit coronagraph (LSC), for which the presence of a slit in the coronagraphic focal plane induces a complex distribution of energy in the Lyot pupil-plane that cannot be easily masked with a binary Lyot stop. To alleviate this concern, we propose to use a pupil apodization to suppress diffraction, creating an apodized long slit coronagraph (ALSC). After describing how the apodization is optimized, we demonstrate its advantages with respect to the CLC in the context of SPHERE/IRDIS long slit spectroscopy (LSS) mode at low-resolution with a 0.12" slit and 0.18" coronagraphic mask. We perform different sets of simulations with and without aberrations, and with and without a slit to demonstrate that the apodization is a more appropriate concept for LSS, at the expense of a significantly reduced throughput (37%) compared to the LSC. Then we perform detailed end-to-end simulations of the LSC and the ALSC that include realistic levels of aberrations to obtain datasets representing 1h of integration time on stars of spectral types A0 to M0 located at 10 pc. We insert spectra of planetary companions at different effective temperatures (Teff) and surface gravities (log g) into the data at angular separations of 0.3" to 1.5" and with contrast ratios from 6 to 18 mag. Using the SD method to subtract the speckles, we show that the ALSC brings a gain in sensitivity of up to 3 mag at 0.3" with respect to the LSC, which leads to a much better spectral extraction below 0.5". In terms of Teff, we demonstrate that at small angular separations the limit with the ALSC is always lower by at least 100K, inducing an increase of sensitivity of a factor up to 1.8 in objects' masses at young ages. [Abridged]Comment: 15 pages, 17 figures. Accepted for publication in A&

    The International Deep Planet Survey I. The frequency of wide-orbit massive planets around A-stars

    Full text link
    Breakthrough direct detections of planetary companions orbiting A-type stars confirm the existence of massive planets at relatively large separations, but dedicated surveys are required to estimate the frequency of similar planetary systems. To measure the first estimation of the giant exoplanetary systems frequency at large orbital separation around A-stars, we have conducted a deep-imaging survey of young (8-400 Myr), nearby (19-84 pc) A- and F-stars to search for substellar companions in the 10-300 AU range. The sample of 42 stars combines all A-stars observed in previous AO planet search surveys reported in the literature with new AO observations from VLT/NaCo and Gemini/NIRI. It represents an initial subset of the International Deep Planet Survey (IDPS) sample of stars covering M- to B-stars. The data were obtained with diffraction-limited observations in H- and Ks-band combined with angular differential imaging to suppress the speckle noise of the central stars, resulting in typical 5-sigma detection limits in magnitude difference of 12 mag at 1", 14 mag at 2" and 16 mag at 5" which is sufficient to detect massive planets. A detailed statistical analysis of the survey results is performed using Monte Carlo simulations. Considering the planet detections, we estimate the fraction of A-stars having at least one massive planet (3-14 MJup) in the range 5-320 AU to be inside 5.9-18.8% at 68% confidence, assuming a flat distribution for the mass of the planets. By comparison, the brown dwarf (15-75 MJup) frequency for the sample is 2.0-8.9% at 68% confidence in the range 5-320 AU. Assuming power law distributions for the mass and semimajor axis of the planet population, the AO data are consistent with a declining number of massive planets with increasing orbital radius which is distinct from the rising slope inferred from radial velocity (RV) surveys around evolved A-stars.Comment: 20 pages, 10 figures, 7 tables. Accepted for publication in A&

    High-contrast imaging of Sirius~A with VLT/SPHERE: Looking for giant planets down to one astronomical unit

    Get PDF
    Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed properties of the system. We present new coronagraphic observations obtained with VLT/SPHERE that explore, for the very first time, the innermost regions of the system down to 0.2" (0.5 AU) from Sirius A. Our observations cover the near-infrared from 0.95 to 2.3 μ\mum and they offer the best on-sky contrast ever reached at these angular separations. After detailing the steps of our SPHERE/IRDIFS data analysis, we present a robust method to derive detection limits for multi-spectral data from high-contrast imagers and spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at 0.2", ~16.3 mag in the 0.4-1.0" range and down to 19 mag at 3.7". In physical units, our observations are sensitive to giant planets down to 11 MJupM_{Jup} at 0.5 AU, 6-7 MJupM_{Jup} in the 1-2 AU range and ~4 MJupM_{Jup} at 10 AU. Despite the exceptional sensitivity of our observations, we do not report the detection of additional companions around Sirius A. Using a Monte Carlo orbital analysis, we show that we can reject, with about 50% probability, the existence of an 8 MJupM_{Jup} planet orbiting at 1 AU. In addition to the results presented in the paper, we provide our SPHERE/IFS data reduction pipeline at http://people.lam.fr/vigan.arthur/ under the MIT license.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    Photometric characterization of exoplanets using angular and spectral differential imaging

    Full text link
    The direct detection of exoplanets has been the subject of intensive research in the recent years. Data obtained with future high-contrast imaging instruments optimized for giant planets direct detection are strongly limited by the speckle noise. Specific observing strategies and data analysis methods, such as angular and spectral differential imaging, are required to attenuate the noise level and possibly detect the faint planet flux. Even though these methods are very efficient at suppressing the speckles, the photometry of the faint planets is dominated by the speckle residuals. The determination of the effective temperature and surface gravity of the detected planets from photometric measurements in different bands is then limited by the photometric error on the planet flux. In this work we investigate this photometric error and the consequences on the determination of the physical parameters of the detected planets. We perform detailed end-to-end simulation with the CAOS-based Software Package for SPHERE to obtain realistic data representing typical observing sequences in Y, J, H and Ks bands with a high contrast imager. The simulated data are used to measure the photometric accuracy as a function of contrast for planets detected with angular and spectral+angular differential methods. We apply this empirical accuracy to study the characterization capabilities of a high-contrast differential imager. We show that the expected photometric performances will allow the detection and characterization of exoplanets down to the Jupiter mass at angular separations of 1.0" and 0.2" respectively around high mass and low mass stars with 2 observations in different filter pairs. We also show that the determination of the planets physical parameters from photometric measurements in different filter pairs is essentialy limited by the error on the determination of the surface gravity.Comment: 13 pages, 7 figures, 4 tables. Accepted for publication in MNRA

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference

    On-sky multi-wavelength phasing of segmented telescopes with the Zernike phase contrast sensor

    Full text link
    Future Extremely Large Telescopes will adopt segmented primary mirrors with several hundreds of segments. Cophasing of the segments together is essential to reach high wavefront quality. The phasing sensor must be able to maintain very high phasing accuracy during the observations, while being able to phase segments dephased by several micrometers. The Zernike phase contrast sensor has been demonstrated on-sky at the Very Large Telescope. We present the multi-wavelength scheme that has been implemented to extend the capture range from \pmlambda/2 on the wavefront to many micrometers, demonstrating that it is successful at phasing mirrors with piston errors up to \pm4.0 micron on the wavefront. We discuss the results at different levels and conclude with a phasing strategy for a future Extremely Large Telescope.Comment: 17 pages, 8 figures, 2 tables. Accepted for publication in Applied Optics; he final publised version is available on the OSA website: http://www.opticsinfobase.org/abstract.cfm?msid=13671

    Molecular line mapping of the giant molecular cloud associated with RCW 106 - II. Column density and dynamical state of the clumps

    Full text link
    We present a fully sampled C^{18}O (1-0) map towards the southern giant molecular cloud (GMC) associated with the HII region RCW 106, and use it in combination with previous ^{13}CO (1-0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant ^{13}CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the HII region G333.6-0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a log-normal distribution as predicted by simulations of turbulence. Decomposing the ^{13}CO and C^{18}O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near -1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.Comment: 17 pages, to appear in MNRA

    Spectroscopy across the brown dwarf/planetary mass boundary - I. Near-infrared JHK spectra

    Full text link
    With a uniform VLT SINFONI data set of nine targets, we have developed an empirical grid of J,H,K spectra of the atmospheres of objects estimated to have very low substellar masses of \sim5-20 MJup and young ages of \sim1-50 Myr. Most of the targets are companions, objects which are especially valuable for comparison with atmosphere and evolutionary models, as they present rare cases in which the age is accurately known from the primary. Based on the sample youth, all objects are expected to have low surface gravity, and this study investigates the critical early phases of the evolution of substellar objects. The spectra are compared with grids of five different theoretical atmosphere models. This analysis represents the first systematic model comparison with infrared spectra of young brown dwarfs. The fits to the full JHK spectra of each object result in a range of best fit effective temperatures of +/-150-300K whether or not the full model grid or a subset restricted to lower log(g) values is used. This effective temperature range is significantly larger than the uncertainty typically assigned when using a single model grid. Fits to a single wavelength band can vary by up to 1000K using the different models. Since the overall shape of these spectra is governed more by the temperature than surface gravity, unconstrained model fits did not find matches with low surface gravity or a trend in log(g) with age. This suggests that empirical comparison with spectra of unambiguously young objects targets (such as these SINFONI data) may be the most reliable method to search for indications of low surface gravity and youth. For two targets, the SINFONI data are a second epoch and the data show no variations in morphology over time. The analysis of two other targets, AB Pic B and CT Cha B, suggests that these objects may have lower temperatures, and consequently lower masses, than previously estimated.Comment: 15 pages, 13 figure
    corecore