212 research outputs found

    Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies

    Get PDF
    A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni “bomb” technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers. High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Δ17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Δ17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites. The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (∼60 irons, ∼35 achondrites and stony-iron, and ∼15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution. High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Δ17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions

    A Target-Based High Throughput Screen Yields Trypanosoma brucei Hexokinase Small Molecule Inhibitors with Antiparasitic Activity

    Get PDF
    African sleeping sickness is a disease found in sub-Saharan Africa that is caused by the single-celled parasite Trypanosoma brucei. The drugs used widely now to treat infections are 50 years old and notable for their toxicity, emphasizing the need for development of new therapeutics. In the search for potential drug targets, researchers typically focus on enzymes or proteins that are essential to the survival of the infectious agent while being distinct enough from the host to avoid accidental targeting of the host enzyme. This work describes our research on one such trypanosome enzyme, hexokinase, which is a protein that the parasite requires to make energy. Here we describe the results of our search for inhibitors of the parasite enzyme. By screening 220,223 compounds for anti-hexokinase activity, we have identified new inhibitors of the parasite enzyme. Some of these are toxic to trypanosomes while having no effect on mammalian cells, suggesting that they may hold promise for the development of new anti-parasitic compounds

    Identifying the connection between Roman Conceptions of ‘Pure Air’ and Physical and Mental Health in Pompeian Gardens (c. 150 BC-AD 79): A Multi-Sensory Approach to Ancient Medicine

    Get PDF
    Different genres of Roman literature commented on the relationship between the condition of the environment and physical and mental health. They often refer to clear, pure, or good air as a beneficial aspect of the environment. Yet, unlike fetid air, they provide few descriptions of what constituted healthy air quality. Moreover, aside from pointing out the association between the environment and bodily condition, the writers also did not explain precisely how the link between the two was made. This paper utilizes a comparative study of ancient literature and the archaeological remains of Roman gardens in Pompeii: archaeobotanical samples, fresco paintings, location, and surviving features. Three questions are addressed in this study: First, how did the Romans identify and define pure? Second, how did air connect to the body? Third, what were the qualities of pure air and how did they benefit the body? Not only was inhalation a means of linking air to the body, but the two were also related through sensory perception. I argue that sight, sound, and olfaction were used to identify the qualities of pure air. Through the sensory process of identification, the beneficial properties of pure air were, in accordance with ancient perceptions of sensory function, taken into the body and affected health. Thus, sensory perception acted as the bridge between the environment and health

    Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    Get PDF
    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel

    Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites

    Get PDF
    A few eucrites have anomalous oxygen isotopic compositions. To help understand their origin and identify additional samples, we have analyzed the oxygen isotopic compositions of 18 eucrites and four diogenites. Except for five eucrites, these meteorites have ?17O values that lie within 2 of their mean value viz., -0.242±0.016', consistent with igneous isotopic homogenization of Vesta. The five exceptional eucrites–NWA 1240, Pasamonte (both clast and matrix samples), PCA 91007, A-881394, and Ibitira–have ?17O values that lie respectively 4?, 5?, 5?, 15?, and 21 away from this mean value. NWA 1240 has a ?18O value that is 5? below the mean eucrite value. Four of the five outliers are unbrecciated and unshocked basaltic eucrites, like NWA 011, the first eucrite found to have an anomalous oxygen isotopic composition. The fifth outlier, Pasamonte, is composed almost entirely of unequilibrated basaltic clasts. Published chemical data for the six eucrites with anomalous oxygen isotopic compositions (including NWA 011) exclude contamination by chondritic projectiles as a source of the oxygen anomalies. Only NWA 011 has an anomalous Fe/Mn ratio, but several anomalous eucrites have exceptional Na, Ti, or Cr concentrations. We infer that the six anomalous eucrites are probably derived from five distinct Vesta-like parent bodies (Pasamonte and PCA 91007 could come from one body). These anomalous eucrites, like many unbrecciated eucrites from Vesta, are probably deficient in brecciation and shock effects because they were sequestered in small asteroids (~10 km diameter) during the Late Heavy Bombardment following ejection from Vesta-like bodies. The preservation of Vesta's crust and the lack of deeply buried samples from the hypothesized Vesta-like bodies are consistent with the removal of these bodies from the asteroid belt by gravitational perturbations from planets and protoplanets, rather than by collisonal grinding

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Was Wright Right? The Canonical Genetic Code is an Empirical Example of an Adaptive Peak in Nature; Deviant Genetic Codes Evolved Using Adaptive Bridges

    Get PDF
    The canonical genetic code is on a sub-optimal adaptive peak with respect to its ability to minimize errors, and is close to, but not quite, optimal. This is demonstrated by the near-total adjacency of synonymous codons, the similarity of adjacent codons, and comparisons of frequency of amino acid usage with number of codons in the code for each amino acid. As a rare empirical example of an adaptive peak in nature, it shows adaptive peaks are real, not merely theoretical. The evolution of deviant genetic codes illustrates how populations move from a lower to a higher adaptive peak. This is done by the use of “adaptive bridges,” neutral pathways that cross over maladaptive valleys by virtue of masking of the phenotypic expression of some maladaptive aspects in the genotype. This appears to be the general mechanism by which populations travel from one adaptive peak to another. There are multiple routes a population can follow to cross from one adaptive peak to another. These routes vary in the probability that they will be used, and this probability is determined by the number and nature of the mutations that happen along each of the routes. A modification of the depiction of adaptive landscapes showing genetic distances and probabilities of travel along their multiple possible routes would throw light on this important concept
    corecore