98 research outputs found

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    Flexible metal–organic frameworks

    Get PDF
    Advances in flexible and functional metal–organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009–2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host–guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal–organic frameworks for separation, catalysis, sensing, and biomedicine

    A family of 2D and 3D coordination polymers involving a trigonal tritopic linker

    Get PDF
    Five new coordination polymers, namely, [Zn2(H2O)2(BBC)](NO3)(DEF)6 (DUT-40), [Zn3(H2O)3(BBC)2] (DUT-41), [(C2H5)2NH2][Zn2(BBC)(TDC)](DEF)6(H2O)7 (DUT-42), [Zn10(BBC)5(BPDC)2(H2O)10](NO3)(DEF)28(H2O)8 (DUT-43), and [Co2(BBC)(NO3)(DEF)2(H2O)](DEF)6(H2O) (DUT-44), where BBC – 4,4′,4′′-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate, TDC – 2,5-thiophenedicarboxylate, BPDC – 4,4′-biphenyldicarboxylate, DEF – N,N-diethylformamide, were obtained under solvothermal conditions and structurally characterized. It has been shown that compounds DUT-40, DUT-41 and DUT-44 exhibit 2D layered structures with large hexagonal channels. Utilization of additional angular dicarboxylic TDC linker led to the formation of the DUT-42 compound with the structure consisting of three interpenetrated 3D networks. Using the linear co-linker dicarboxylic BPDC, DUT-43 was obtained which forms a complicated 3D architecture arising from the polycatenation of triple-layered 2D building units and 2D single layer units. The pore accessibility of the synthesized compounds in the liquid phase was proved by the adsorption of dye molecules.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Raman spectroscopy study of the switchable phases metal-organic frameworks DUT-8(Ni)

    Full text link
    Acknowledgments: I.S.,V.B., S.K. thank the DFG for financial support (FOR 2433); A.K., S.K., A.V. thank the Russian Foundation for Basic Research for financial support (18-02-00754)

    Exceptional adsorption induced cluster and network deformation in the flexible metal organic framework DUT 8 Ni observed by in situ X ray diffraction and EXAFS

    Get PDF
    The gate opening mechanism in the highly flexible MOF Ni2 2,6 ndc 2dabco DUT 8 Ni , DUT Dresden University of Technology with unprecedented unit cell volume change was elucidated in detail using combined single crystal X ray diffraction, in situ XRD and EXAFS techniques. The analysis of the crystal structures of closed pore cp and large pore lp phases reveals a drastic and unique unit cell volume expansion of up to 254 , caused by adsorption of gases, surpassing other gas pressure switchable MOFs significantly. To a certain extent, the structural deformation is specific for the guest molecule triggering the transformation due to subtle differences in adsorption enthalpy, shape, and kinetic diameter of the guest. Combined adsorption and powder diffraction experiments using nitrogen 77 K , carbon dioxide 195 K , and n butane 272.5 K as a probe molecules reveal a one step structural transformation from cp to lp. In contrast, adsorption of ethane 185 K or ethylene 169 K results in a two step transformation with the formation of intermediate phases. In situ EXAFS during nitrogen adsorption was used for the first time to monitor the local coordination geometry of the metal atoms during the structural transformation in flexible MOFs revealing a unique local deformation of the nickel based paddle wheel nod

    Establishing ZIF-8 as a reference material for hydrogen cryoadsorption: An interlaboratory study

    Get PDF
    Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.M. Maiwald, J. A. Villajos, R. Balderas and M. Hirscher acknowledge the EMPIR programme from the European Union's Horizon 2020 research and innovation programme for funding. F. Cuevas and F. Couturas acknowledge support from France 2030 program under project ANR-22-PEHY-0007. D. Cazorla and A. Berenguer-Murcia thank the support by PID2021-123079OB-I00 project funded by MCIN/AEI/10.13039/501100011033, and “ERDF A way of making Europe”. K. N. Heinselman, S. Shulda and P. A. Parilla acknowledge the support from the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technology Office through the HyMARC Energy Materials Network

    Geoendemic evaluation of clinical and epidemiological features of growth hormone deficiency in children of Odesa region based on the 15-year monitoring

    Get PDF
    Цель: изучить эпидемиологию дефицита гормона роста (ДГР) у детей и общую заболеваемость (на 10 000 детей) в разных геоэндемических провинциях Одесской области (Украина). Проведена клиническая, лабораторная и эпидемиологическая экспертиза ДГР у детей в трех физико"географических зонах (Лесостепная зона, Степная зона, Заднестровская зона) и в двух геоэндемических провинциях Одесской области (на территории Ананьевского и Любашевского районов). В 2016 году детское население Одесской области составило 450 622 ребенка от 0 до 17 лет. На диспансерном учете по поводу ДГР состояло 43 ребенка. Общая заболеваемость (ОЗ) ДГР по области составила 0,95. Распространенность (Р) заболевания (соотношение больных детей с ДГР к общей популяции детей) составило 43:450 622, или 1:10 400. В г. Одессе зарегистрировано 15 детей с ДГР на 153 530 детского населени; ОЗ составила 0,98; Р – 15:153530, или 1:10 200. Соотношение мальчиков и девочек составило 2,3:1 для области и 2:1 для г. Одессы. По физико"географическим зонам Одесской области это соотношение составило: в Лесостепной зоне – 3:1, в Степной зоне – 2:1 и Заднестровской – 1,7:1. Наибольшие показатели ОЗ (1,67) и Р (1:5 900) ДГР у детей выявлены в Лесостепной, наименьшие — у детей Степной зоны (0,59 и 1:16 700). Максимальная заболеваемость отмечена в геоэндемических провинциях, расположенных в местах разломов земной коры на территории Одесской области. Анализ выявляемости ДГР показал наличие нескольких возрастных «волн»: в возрасте 5–6, 10–12 и 12–14 лет. Распространенность и общая заболеваемость ДГР у детей гетерогенны в различных физико-географических зонах Одесской области и требуют дальнейшего изучения возможной связи заболевания с геоэндемическими провинциями и экологическими особенностями районов.Мета: вивчити епідеміологію дефіциту гормону росту (ДГР) у дітей і загальну захворюваність (на 10 000 дітей) у різних геоендемічних провінціях Одеської області (Україна). Проводилася клінічна, лабораторна й епідеміологічна експертиза ДГР у дітей у трьох фізико"географічних зонах (Лісостепова зона, Степова зона, Задністровська зона) і в двох геоендемічних провінцій Одеської області (на території Ананьївського і Любашівського районів), У 2016 р. дитяче населення Одеської області склало 450 622 дитини від 0 до 17 років. На диспансерному обліку з приводу ДГР знаходилося 43 дитини. Загальна захворюваність (ЗЗ) ДГР по області склала 0,95. Поширеність (П) захворювання (співвідношення хворих дітей з ДГР до загальної популяції дітей) склало 43: 450 622, або 1:10 400 В Одесі зареєстровано 15 дітей з ДГР на 153 530 дитячого населення; ЗЗ склала 0,98; П – 15:153530, або 1:10 200. Співвідношення хлопчиків і дівчаток склало 2,3:1 для області і 2:1 для м. Одеси. За фізико"географічним зонам Одеської області це співвідношення склало: у Лісостеповій зоні – 3:1, у Степовій зоні – 2:1 і Заднестровскій – 1,7:1. Найбільшу ЗЗ (1,67) і П (1: 5 900) ДГР у дітей виявлено в Лісостеповій, найменшу – у дітей Степової зони (0,59 і 1:16 700). Максимальна захворюваність відзначена у геоендемічних провінціях, розташованих в місцях розломів земної кори на території Одеської області. Аналіз виявлення ДГР показав наявність декількох вікових «хвиль»: у віці 5–6 років, 10"12 років і 12–14 років. Поширеність і загальна захворюваність ДГР у дітей гетерогенні в різних фізико"географічних зонах Одеської області і вимагають подальшого вивчення можливого зв'язку захворювання з геоендемічними провінціями та екологічними особливостями районів.Objective: to explore the epidemiology of pediatric growth hormone deficiency (GHD) and the overall morbidity (per 10 000 children) in different geoendemic provinces of Odesa region (Ukraine). Material and methods: clinical laboratory and epidemiological examination of pediatric GHD in 3 physiographic zones (forest"steppe zone, steppe zone, interfluves zone) and in 2 geoendemic provinces of Odesa region (on the territory of Ananivskyi and Liubashevskyi districts). The pediatric population (0–17 years) in Odesa region at the end of 2016 included 450,622. Among them 43 children with GHD were followed up in the Endocrinology Department of Odesa Regional Children's Hospital. The total incidence (TI) of GHD in Odesa region compiled 0.95. The GHD prevalence ratio (PR) (ratio of sick children with GHD to the general population of children) was (43:450,622 or 1:10,400). There were 15 children with GHD among 153,530 of the children's population in Odesa. TI compiled 0.98; PR – (15:153,530 or 1:10,200).The ratio of sick boys and girls was 2.3:1 for the region and 2:1 for Odesa. According to the physicjgraphic zones of Odesa region, this ratio was: in the forest–steppe zone – (3:1), in the steppe zone – (2:1) and in the interfluve zone – (1.7:1). The highest TI (1.67) and PR (1:5,900) of GHD in children are found in the forest"steppe zone. The lowest TI was in children from the steppe zone: (0.59), where PR compiled (1:16,700). The highest morbidity is noted in the so"called «geoendemic provinces» located at the fault zones of the Earth's crust in north part of Odesa region. GHD is underdiagnosed and detectability is associated with several age"related «waves»: at the age of 5–6 years; 10–12 years and 12–14 years. The heterogeneity GHD prevalence in various physicographical zones of Odesa region requires further study of the possible connection of the disease with geoendemic provinces and ecological features of areas

    Multifunctional metal–organic frameworks: from academia to industrial applications

    Full text link

    Organic-inorganic supramolecular solid catalyst boosts organic reactions in water

    Get PDF
    [EN] Coordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation. The mesoscopic phase of the solid allows for easy diffusion of products and the catalytic solid is recycled and reused. Saturation transfer difference and two-dimensional H-1 nuclear Overhauser effect NOESY NMR spectroscopy show that non-covalent interactions are operative in these host-guest systems that account for substrate activation. The mesoscopic character of the host, its hydrophobicity and chemical stability in water, launch this material as a highly attractive supramolecular catalyst to facilitate (asymmetric) transformations under more environmentally friendly conditions.This work was funded by ERC-AdG-2014-671093-SynCatMatch and the Generalitat Valenciana (Prometeo). M.B. acknowledges the funding: CTQ2014-52633-P. The Severo Ochoa program (SEV-2012-0267) is thankfully acknowledged.García García, P.; Moreno Rodríguez, JM.; Díaz Morales, UM.; Bruix, M.; Corma Canós, A. (2016). Organic-inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications. 7. https://doi.org/10.1038/ncomms10835S7Li, B. et al. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 136, 6207–6210 (2014).Getman, R. B., Bae, Y.-S., Wilmer, C. E. & Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 112, 703–723 (2012).Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014).Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 38, 1353–1379 (2009).Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).Liu, J. et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).Rowsell, J. L. C. & Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Micropor. Mesopor. Mat. 73, 3–14 (2004).Eubank, J. F. et al. The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 133, 17532–17535 (2011).Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).Chang, Z. et al. Rational construction of 3D pillared metal–organic frameworks: synthesis, structures, and hydrogen adsorption properties. Inorg. Chem. 50, 7555–7562 (2011).Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun. 4780–4795 (2006).Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).Senkovska, I. et al. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al (OH) (bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Micropor. Mesopor. Mat. 122, 93–98 (2009).Klein, N. et al. Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M=Ni, Cu, Co, Zn) metal-organic frameworks. J. Mater. Chem. 22, 10303–10312 (2012).Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal–organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni). J. Am. Chem. Soc. 133, 8681–8690 (2011).Gu, J.-M., Kim, W.-S. & Huh, S. Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Trans. 40, 10826–10829 (2011).Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur. J. Inorg. Chem. 2009, 2338–2343 (2009).Yang, Q. et al. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. J. Mater. Chem. 22, 10210–10220 (2012).Li, H. et al. Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency. J. Am. Chem. Soc. 137, 4332–4335 (2015).Hapiot, F., Bricout, H., Menuel, S., Tilloy, S. & Monflier, E. Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal. Sci. Technol. 4, 1899–1908 (2014).Harada, A., Takashima, Y. & Nakahata, M. Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014).Cong, H. et al. Substituent effect of substrates on cucurbit[8]uril-catalytic oxidation of aryl alcohols. J. Mol. Catal. A Chem. 374-375, 32–38 (2013).Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L. & Lu, X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012).Song, F.-T., Ouyang, G.-H., Li, Y., He, Y.-M. & Fan, Q.-H. Metallacrown ether catalysts containing phosphine-phosphite polyether ligands for Rh-catalyzed asymmetric hydrogenation—enhancements in activity and enantioselectivity. Eur. J. Org. Chem. 2014, 6713–6719 (2014).Rebilly, J.-N. & Reinaud, O. Calixarenes and resorcinarenes as scaffolds for supramolecular metallo-enzyme mimicry. Supramol. Chem. 26, 454–479 (2014).Ajami, D., Liu, L. & Rebek, J. Jr Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490–499 (2015).Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143–1164 (2004).Kemp, D. S., Cox, D. D. & Paul, K. G. Physical organic chemistry of benzisoxazoles. IV. Origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J. Am. Chem. Soc. 97, 7312–7318 (1975).Thorn, S. N., Daniels, R. G., Auditor, M. T. & Hilvert, D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228–230 (1995).Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).Murase, T., Nishijima, Y. & Fujita, M. Cage-catalyzed knoevenagel condensation under neutral conditions in water. J. Am. Chem. Soc. 134, 162–164 (2012).Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 136, 14409–14412 (2014).Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-Oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223–10230 (2006).Bezverkhyy, I. et al. MIL-53(Al) under reflux in water: formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Micropor. Mesopor. Mat. 183, 156–161 (2014).Wang, L.-M. et al. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66, 339–343 (2010).List B. Science of Synthesis: Asymmetric Organocatalysis 1, Lewis Base and Acid Catalysts Georg Thieme Verlag (2012).He, T., Gu, Q. & Wu, X.-Y. Highly enantioselective Michael addition of isobutyraldehyde to nitroalkenes. Tetrahedron 66, 3195–3198 (2010).Avila, A., Chinchilla, R., Fiser, B., Gómez-Bengoa, E. & Nájera, C. Enantioselective Michael addition of isobutyraldehyde to nitroalkenes organocatalyzed by chiral primary amine-guanidines. Tetrahedron Asymmetry 25, 462–467 (2014).Meyer, B. & Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 42, 864–890 (2003).Szczygiel, A., Timmermans, L., Fritzinger, B. & Martins, J. C. Widening the view on dispersant−pigment interactions in colloidal dispersions with saturation transfer difference NMR spectroscopy. J. Am. Chem. Soc. 131, 17756–17758 (2009).Basilio, N., Martín-Pastor, M. & García-Río, L. Insights into the structure of the supramolecular amphiphile formed by a sulfonated calix[6]arene and alkyltrimethylammonium surfactants. Langmuir 28, 6561–6568 (2012).Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784–1788 (1999)

    Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube

    Get PDF
    The adsorptivities of supercritical CH(4) and H(2) of the external and internal tube walls of single wall carbon nanotube (SWCNT) were determined. The internal tube wall of the negative curvature showed the higher adsorptivities for supercritical CH(4) and H(2) than the external tube wall of the positive curvature due to their interaction potential difference. Fine SWCNT bundles were prepared by the capillary force-aided drying treatment using toluene or methanol in order to produce the interstitial pore spaces having the strongest interaction potential for CH(4) or H(2); the bundled SWCNT showed the highest adsorptivity for supercritical CH(4) and H(2). It was clearly shown that these nanostructures of SWCNTs are crucial for supercritical gas adsorptivity.ArticleADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY. 17(3):643-651 (2011)journal articl
    corecore