111 research outputs found
The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-Mass Early-Type Galaxies from Gemini GMOS-IFU Spectroscopy
We present Gemini GMOS-IFU data of eight compact low-mass early-type galaxies
(ETGs) in the Virgo cluster. We analyse their stellar kinematics, stellar
population, and present two-dimensional maps of these properties covering the
central 5"x 7" region. We find a large variety of kinematics: from non- to
highly-rotating objects, often associated with underlying disky isophotes
revealed by deep images from the Next Generation Virgo Cluster Survey. In half
of our objects, we find a centrally-concentrated younger and more metal-rich
stellar population. We analyze the specific stellar angular momentum through
the lambdaR parameter and find six fast-rotators and two slow-rotators, one
having a thin counter-rotating disk. We compare the local galaxy density and
stellar populations of our objects with those of 39 more extended low-mass
Virgo ETGs from the SMAKCED survey and 260 massive (\Msun) ETGs from
the A3D sample. The compact low-mass ETGs in our sample are located in high
density regions, often close to a massive galaxy and have, on average, older
and more metal-rich stellar populations than less compact low-mass galaxies. We
find that the stellar population parameters follow lines of constant velocity
dispersion in the mass-size plane, smoothly extending the comparable trends
found for massive ETGs. Our study supports a scenario where low-mass compact
ETGs have experienced long-lived interactions with their environment, including
ram-pressure stripping and gravitational tidal forces, that may be responsible
for their compact nature.Comment: Accepted in ApJ, 19 pages, 10 figure
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory
We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
RiskStructures : A Design Algebra for Risk-Aware Machines
Machines, such as mobile robots and delivery drones, incorporate controllers responsible for a task while handling risk (e.g. anticipating and mitigating hazards; and preventing and alleviating accidents). We refer to machines with this capability as risk-aware machines. Risk awareness includes robustness and resilience, and complicates monitoring (i.e., introspection, sensing, prediction), decision making, and control. From an engineering perspective, risk awareness adds a range of dependability requirements to system assurance. Such assurance mandates a correct-by-construction approach to controller design, based on mathematical theory. We introduce RiskStructures, an algebraic framework for risk modelling intended to support the design of safety controllers for risk-aware machines. Using the concept of a risk factor as a modelling primitive, this framework provides facilities to construct, examine, and assure these controllers. We prove desirable algebraic properties of these facilities, and demonstrate their applicability by using them to specify key aspects of safety controllers for risk-aware automated driving and collaborative robots
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
- …