9 research outputs found
Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles
A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E 2 spectrum from two large areas, spanning 50 above and below the
Galactic centre (the ‘‘Fermi bubbles’’). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles
with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate
that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a
possible lower cutoff is also considered.Published7–141.8. Osservazioni di geofisica ambientaleJCR Journalrestricte
Expansion cone for the 3-inch PMTs of the KM3NeT optical modules
[EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.Adrián Martínez, S.; Ageron, M.; Aguilar, JA.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.... (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation. 8(3):1-19. https://doi.org/10.1088/1748-0221/8/03/T03006S1198
Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles
A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered. © 2012 Elsevier B.V. All rights reserved
Expansion cone for the 3-inch PMTs of the KM3NeT optical modules
Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45° with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.© 2013 IOP Publishing Ltd and Sissa Medialab srl
Expansion cone for the 3-inch PMTs of the KM3NeT optical modules
<p>Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.</p>
KM3NeT: Technical design report.
KM3NeT is a deep‐sea multidisciplinary observatory in the Mediterranean Sea that will provide innovative science
opportunities spanning Astroparticle Physics and Earth and Sea Science. This is possible through the synergy created by the use of a common infrastructure allowing for long term continuous operation of a neutrino telescope and marine
instrumentation. The present KM3NeT Design Study concludes with this Technical Design Report which develops the ideas put forward in the Conceptual Design Report published in April 2008
Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles
<p>A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km(3) of instrumented volume. The effect of a possible lower cutoff is also considered. (C) 2012 Elsevier B.V. All rights reserved.</p>
KM3NeT. Conceptual Design Report for a Deep-Sea Research Infrastructure Incorporating a Very Large Volume Neutrino Telescope in the Mediterranean Sea
The scientific case for a neutrino telescope of a cubic kilometre scale is overwhelming. The infra‐structure it requires can easily be shared by a host of other, associated, sciences, making long‐term measurements in the area of oceanography, clima‐tology, geophysics, geotechnics and marine bio‐logical sciences possible. This combination of neu‐trino telescope and multidisciplinary undersea ob‐servatory, KM3NeT, is the subject of this Design Report. It summarises goals for the design and the options for its technical implementation
The developmental psychopathology of social anxiety and phobia in adolescents
The highest incidence rates for social anxiety disorder (SAD) occur during the period from late childhood to early adulthood. A number of factors that increase vulnerability for the development of SAD have been proposed in the literature, including genes, temperament, biological factors, cognitive factors, parent factors, life events, peer experiences, performance deficits, general learning mechanisms, and cultural factors. These proposed aetiological factors have been given different weightings in theoretical accounts of the aetiology of SAD. Genes, temperament, cognitive factors, parent factors, life events, and peer experiences are generally emphasised in theoretical accounts, while biological factors, performance deficits, general learning mechanisms, and cultural factors have received less emphasis. The proposed aetiological factors have also been empirically examined to varying extents in the literature. In general, the majority of research into the proposed aetiological factors has been limited by the use of cross-sectional designs and the recruitment of individuals already diagnosed with SAD. Further research is needed to obtain better evidence to evaluate the aetiological role of the proposed factors. Such research will ultimately help to develop efficacious early intervention and prevention strategies for SAD