18 research outputs found

    Desalination effects on macroalgae (part A): Laboratory-controlled experiments with Dictyota spp. from the Pacific Ocean and Mediterranean Sea

    Get PDF
    Desalination brines from direct seawater intake that get discharged to coastal areas may produce stress responses on benthic marine communities, mostly due to its excess salinity, and especially on sessile organisms; in this context, macroalgae have been understudied in desalination ecotoxicological investigations. In this study, we assessed the short- and long-term cellular tolerance responses in two brown species of the macroalgae genus Dictyota through controlled laboratory conditions. Dictyota kunthii was collected from the eastern Pacific Ocean (average salinity, ~34 psu), whereas Dictyota dichotoma was from the Mediterranean Sea (average salinity, ~37 psu). Each macroalgae species was exposed for up to 7 days to two conditions with increased salinity values: +2 and +7 psu above their natural average salinity. Photosynthetic parameters and oxidative stress measurements were determined. The results showed that, in both Dictyota species, high salinity values induced reduced photoinhibition (Fv/Fm) but increased the primary productivity (ETRmax) and light requirement (EkETR) especially after 7 days. Conversely, the photosynthetic efficiency (αETR) decreased in hypersalinity treatments in D. dichotoma, while there were no changes in D. kunthii. The reactive oxygen species hydrogen peroxide (H2O2) was greater at high salinity values at 3 days for D. dichotoma and after 7 days in D. kunthii, while lipid peroxidation decreases under hypersalinity with time in both species. Despite the evident H2O2 accumulation in both species against hypersalinity, it did not produce oxidative damage and important impairment in the photosynthetic apparatus. These results contribute to understanding the tolerance strategies at the cellular level of Dictyota spp., which may be considered as potential candidates for biomonitoring of desalination impacts in the field.We gratefully thank the financial support from ANID FONDECYT Postdoctoral fellowship #3180394, European Commission Marie SkƂodowska-Curie Actions #888415, and ANID INES I+D # INID210013. Financial support for mobility was granted from SEGIB Scholarship and FundaciĂłn Carolina of Spain to PM. We also thank TESPOST 04/19 PhD scholarship granted by Universidad de Playa Ancha to PM. The initiative was also funded by Universidad de Playa Ancha through the Concurso Regular de InvestigaciĂłn 2019 no. CEA 19-20

    Desalination effects on macroalgae (part b): Transplantation experiments at brine-impacted sites with Dictyota spp. from the Pacific Ocean and Mediterranean Sea

    Get PDF
    Desalination residual brines are mostly discharged to marine environments, which can produce osmotic stress on sensitive benthic organisms. In this investigation, we performed transplantation experiments nearby desalination plants using two brown macroalgae species from a cosmopolitan genus: Dictyota kunthii (Chile) and Dictyota dichotoma (Spain). Parameters related to photosynthetic activity and oxidative stress were evaluated at 3 and 7 days for D. kunthii, and 3 and 6 days for D. dichotoma; each at 2 different impacted sites and 1 control. We observed that brine exposition at both impacted sites in Chile generated a marked stress response on D. kunthii, reflected in a decrease of primary productivity (ETRmax), light requirement (EkETR), and an excessive thermal dissipation (NPQmax), especially at 7 days. In D. dichotoma, similar impaired photosynthetic activity was recorded but only at the highest brine influence site during day 3. Regarding oxidative stress, both species displayed high levels of H2O2 when exposed to brine-influenced sites. Although in D. kunthii H2O2 content together with lipid peroxidation was higher after 3 days, these returned to baseline values towards day 7; instead, D. dichotoma H2O2 levels increased only at day 6. This easy and practical approach has proven to provide valuable data to address potential impacts of brine discharges at global scale coastal ecosystems.We gratefully thank financial support to ANID FONDECYT Postdoctoral fellowship #3180394, European Commission Marie SkƂodowska-Curie Actions #888415, and ANID INES I+D # INID210013. Financial support for mobility granted from SEGIB Scholarship and Fundación Carolina of Spain to PM. Also, we thank TESPOST 04/19 PhD scholarship granted by Universidad de Playa Ancha to PM

    Transcriptomic profiles and diagnostic biomarkers in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa reveal mechanistic insights of adaptative strategies upon desalination brine stress

    Get PDF
    Seawater desalination by reverse osmosis is growing exponentially due to water scarcity. Byproducts of this process (e.g. brines), are generally discharged directly into the coastal ecosystem, causing detrimental effects, on benthic organisms. Understanding the cellular stress response of these organisms (biomarkers), could be crucial for establishing appropriate salinity thresholds for discharged brines. Early stress biomarkers can serve as valuable tools for monitoring the health status of brine-impacted organisms, enabling the prediction of long-term irreversible damage caused by the desalination industry. In this study, we conducted laboratory-controlled experiments to assess cellular and molecular biomarkers against brine exposure in two salinity-sensitive Mediterranean seagrasses: Posidonia oceanica and Cymodocea nodosa. Treatments involved exposure to 39, 41, and 43 psu, for 6 h and 7 days. Results indicated that photosynthetic performance remained unaffected across all treatments. However, under 43 psu, P. oceanica and C. nodosa exhibited lipid oxidative damage, which occurred earlier in P. oceanica. Additionally, P. oceanica displayed an antioxidant response at higher salinities by accumulating phenolic compounds within 6 h and ascorbate within 7 d; whereas for C. nodosa the predominant antioxidant mechanisms were phenolic compounds accumulation and total radical scavenging activity, which was evident after 7 d of brines exposure. Finally, transcriptomic analyses in P. oceanica exposed to 43 psu for 7 days revealed a poor up-regulation of genes associated with brassinosteroid response and abiotic stress response, while a high down-regulation of genes related to primary metabolism was detected. In C. nodosa, up-regulated genes were involved in DNA repair, cell cycle regulation, and reproduction, while down-regulated genes were mainly associated with photosynthesis and ribosome assembly. Overall, these findings suggest that 43 psu is a critical salinity-damage threshold for both seagrasses; and despite the moderate overexpression of several transcripts that could confer salt tolerance, genes involved in essential biological processes were severely downregulated.FRR was financed by Fondecyt #11220425 grant from ANID, Chile. CAS was financed by project ANID InES I + D 2021 (INID210013) and by Marie SkƂodowska-Curie Action (888415). FBM was supported by a grant from Universidad de Alicante (Grant ID: FPUUA98)

    Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere

    Get PDF
    For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds

    Search for lepton-flavour-violating H → Ότ decays of the Higgs boson with the ATLAS detector

    Get PDF
    A direct search for lepton-flavour-violating H → Ότ decays of the recently discovered Higgs boson with the ATLAS detector at the LHC is presented. The analysis is performed in the H → Ότ had channel, where τ had is a hadronically decaying τ -lepton. The search is based on the data sample of proton-proton collisions collected by the ATLAS experiment corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s √ =8 s=8 TeV. No statistically significant excess of data over the predicted background is observed. The observed (expected) 95% confidence-level upper limit on the branching fraction, Br(H → Ότ ), is 1.85% (1.24%)

    Investigation of unsupervised models for biodiversity assessment

    No full text
    Significant animal species loss has been observed in recent decades due to habitat destruction, which puts at risk environmental integrity and biodiversity. Traditional ways of assessing biodiversity are limited in terms of both time and space, and have high cost. Since the presence of animals can be indicated by sound, recently acoustic recordings have been used to estimate species richness. Bioacoustic sounds are typically recorded in habitats for several weeks, so contain a large collection of different sounds. Birds are of particular interest due to their distinctive calls and because they are useful ecological indicators. To assess biodiversity, the task of manually determining how many different types of birds are present in such a lengthy audio is really cumbersome. Towards providing an automated support to this issue, in this paper we investigate and propose a clustering based approach to assist in automated assessment of biodiversity. Our approach first estimates the number of different species and their volumes which are used for deriving a biodiversity index. Experimental results with real data indicates that our proposed approach estimates the biodiversity index value close to the ground truth

    A risk assessment on Zostera chilensis, the last relict of marine angiosperms in the South-East Pacific Ocean, due to the development of the desalination industry in Chile

    Get PDF
    Seagrasses, which are considered among the most ecologically valuable and endangered coastal ecosystems, have a narrowly limited distribution in the south-east Pacific, where Zostera chilensis is the only remaining relict. Due to water scarcity, desalination industry has grown in the last decades in the central-north coasts of Chile, which may be relevant to address in terms of potential impacts on benthic communities due to their associated high-salinity brine discharges to subtidal ecosystems. In this work, we assessed ecophysiological and cellular responses to desalination-extrapolable hypersalinity conditions on Z. chilensis. Mesocosms experiments were performed for 10 days, where plants were exposed to 3 different salinity treatments: 34 psu (control), 37 psu and 40 psu. Photosynthetic performance, H2O2 accumulation, and ascorbate content (reduced and oxidized) were measured, as well as relative gene expression of enzymes related to osmotic regulation and oxidative stress; these, at 1, 3, 6 and 10 days. Z. chilensis showed a decrease in photosynthetic parameters such as electron transport rate (ETRmax) and saturation irradiance (EkETR) under hypersalinity treatments, while non-photochemical quenching (NPQmax) presented an initial increment and a subsequent decline at 40 psu. H2O2 levels increased with hypersalinity, while ascorbate and dehydroascorbate only increased under 37 psu, although decreased along the experimental period. Increased salinities also triggered the expression of genes related to ion transport and osmolyte syntheses, but salinity-dependent up-regulated genes were mostly those related to the reactive oxygen species metabolism. The relict seagrass Z. chilensis has shown to withstand increased salinities that may be extrapolable to desalination effects in the short-term. As the latter is not fully clear in the long-term, and considering the restricted distribution and ecological importance, direct brine discharges to Z. chilensis meadows may not be recommended.F. Blanco-Murillo was supported by a grant from Universidad de Alicante (Grant ID: FPUUA98). The investigation was financed by Marie SkƂodowska-Curie Action (888415) granted to C.A. Sáez. Contribution of project ANID InES I+D 2021 (INID210013) is also acknowledged

    Fat, Weather, and Date Affect Migratory Songbirds\u27 Departure Decisions, Routes, and Time It Takes to Cross the Gulf of Mexico

    No full text
    Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson\u27s Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∌1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf
    corecore