684 research outputs found

    Dark Matter from Conformal Sectors

    Get PDF
    We show that a conformal-invariant dark sector, interacting conformally with the Standard Model (SM) fields through the Higgs portal, provides a viable framework where cold dark matter (CDM) and invisible Higgs decays can be addressed concurrently. Conformal symmetry naturally subsumes the Z_2 symmetry needed for stability of the CDM. It also guarantees that the weaker the couplings of the dark sector fields to the SM Higgs field, the smaller the masses they acquire through elektroweak breaking. The model comfortably satisfies the bounds from Large Hadron Collider (LHC) and Planck Space Telescope (Planck 2013).Comment: 9 pages, 3 figure

    Higgs Phenomenology in Warped Extra-Dimensions with a 4th Generation

    Full text link
    We study a warped extra-dimension scenario where the Standard Model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the SM fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly non-symmetrical in the (34){(34)} inter-generational mixing. The radiative corrections from the new fermions and their flavor violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z→bbˉZ\to b {\bar b} or Z→μ+μ−Z \to \mu^+ \mu^-. On the other hand, ΔF=1,2\Delta F=1,2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b→sγb \to s \gamma and μ→eγ\mu \to e\gamma put some generic pressure on the allowed size of the flavor violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.Comment: 39 pages, 6 figure

    Computerized Hittite Cuneiform Sign Recognition and Knowledge-Based System Application Examples

    Get PDF
    The Hittites had lived in Anatolia more than 4000 years ago. The Hittite language is one of the oldest and may be the only one still readable and grammar rules are known member of Indo-European language family. The Hittites had a cuneiform script of their own written on soft clay pads or tablets. Tablets made durable and permanent by baking them after writing with some tools. That is why they could endure for thousands of years buried in the ground. The study of Hittite language has been made manually on the Hittite cuneiform tablets. Unfortunately, field scientists have read and translated only a relatively small number of unearthed tablets. Many more tablets are still waiting under and over ground in Anatolia for reading and translation into various languages. To read and translate the cuneiform signs, using computeraided techniques would be a significant contribution not only to Anatolian and Turkish but also to human history. In this paper, recognition of Hittite cuneiform signs by using computer based image-processing techniques is reported. Additionally, uses of data-mining applications are also included in the paper. Most importantly, the authors also demonstrated feasibility of an expert system on the Hittite cuneiform script

    Prophylactic oxytocin: Before or after placental delivery?

    Get PDF
    Timing alone doesn't influence the drug's efficacy in preventing postpartum bleeding (strength of recommendation: B, randomized controlled trial [RCT] and prospective cohort studies)

    ADHD patients fail to maintain task goals in face of subliminally and consciously induced cognitive conflicts

    Get PDF
    Background. Attention deficit hyperactivity disorder (ADHD) patients have been reported to display deficits in action control processes. While it is known that subliminally and consciously induced conflicts interact and conjointly modulate action control in healthy subjects, this has never been investigated for ADHD. Method. We investigated the (potential) interaction of subliminally and consciously triggered response conflicts in children with ADHD and matched healthy controls using neuropsychological methods (event-related potentials; ERPs) to identify the involved cognitive sub-processes. Results. Unlike healthy controls, ADHD patients showed no interaction of subliminally and consciously triggered response conflicts. Instead, they only showed additive effects as their behavioural performance (accuracy) was equally impaired by each conflict and they showed no signs of task-goal shielding even in cases of low conflict load. Of note, this difference between ADHD and controls was not rooted in early bottom-up attentional stimulus processing as reflected by the P1 and N1 ERPs. Instead, ADHD showed either no or reversed modulations of conflict-related processes and response selection as reflected by the N2 and P3 ERPs. Conclusion. There are fundamental differences in the architecture of cognitive control which might be of use for future diagnostic procedures. Unlike healthy controls, ADHD patients do not seem to be endowed with a threshold which allows them to maintain high behavioural performance in the face of low conflict load. ADHD patients seem to lack sufficient top-down attentional resources to maintain correct response selection in the face of conflicts by shielding the response selection process from response tendencies evoked by any kind of distractor

    TRACK-a new algorithm and open-source tool for the analysis of pursuit-tracking sensorimotor integration processes.

    Get PDF
    In daily life, sensorimotor integration processes are fundamental for many cognitive operations. The pursuit-tracking paradigm is an ecological and valid paradigm to examine sensorimotor integration processes in a more complex environment than many established tasks that assess simple motor responses. However, the analysis of pursuit-tracking performance is complicated, and parameters quantified to examine performance are sometimes ambiguous regarding their interpretation. We introduce an open-source algorithm (TRACK) to calculate a new tracking error metric, the spatial error, based on the identification of the intended target position for the respective cursor position. The identification is based on assigning cursor and target direction changes to each other as key events, based on the assumptions of similarity and proximity. By applying our algorithm to pursuit-tracking data, beyond replication of known effects such as learning or practice effects, we show a higher precision of the spatial tracking error, i.e., it fits our behavioral data better than the temporal tracking error and thus provides new insights and parameters for the investigation of pursuit-tracking behavior. Our work provides an important step towards fully utilizing the potential of pursuit-tracking tasks for research on sensorimotor integration processes. [Abstract copyright: © 2023. The Author(s).

    The neurophysiology of continuous action monitoring.

    Get PDF
    Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments. [Abstract copyright: © 2023 The Author(s).

    AN APPROACH FOR DETERMINING GROUND TRANSPARENT MOVEMENT

    Get PDF
    The aim of this study is the improvement of Terzaghi bearing capacity formula which is a very common method to determine the bearing capacity in shallow foundations. For this purpose, many sampling has been done in very wide range for several formulas and variances that use to determine the bearing capacity in shallow foundations and a new formula is derived based on the Terzaghi bearing capacity formula with modification cofficionts. Terzaghi keep as template however, the coefficients in Terzaghi template are evaluated with non-linear regression analysis method based on the soil samples that characteristic’s determined in synthetic way. As a result of this evaluation, new formula is developed with new coefficients that are referred to Terzaghi template. The proposed formula is compared with other analytical bearing capacity and experimental bearing capacity values
    • …
    corecore