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The directed depolymerization of lignin biopolymers is of utmost relevance for the valorization, 

i.e. commercialization, of biomass fuels. We present a computational and theoretical screening 

approach to identify potential cleavage pathways and resulting fragments that are formed during 

depolymerization of lignin oligomers containing two to six monomers.  We have developed a 

chemical discovery technique to identify the chemically relevant putative fragments in eight 

known polymeric linkage types of lignin. Obtaining these structures is a crucial precursor to the 

development of any further kinetic modeling. We have developed this approach by adapting 

steered molecular dynamics calculations under constant force and varying the points of applied 

force in the molecule to diversify the screening approach. Key observations include relationships 

between abundance and breaking frequency, the relative diversity of potential pathways for a 

given linkage, and the observation that readily-cleaved bonds can destabilize adjacent bonds, 

causing subsequent automatic cleavage. 
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1. Introduction 

As the demand for finding and utilizing cheap and renewable energy sources mounts1, 

more complex and heterogeneous feedstocks, such as biomass2-3, are increasingly being 

considered. The valorization, or commercialization of a pathway to fuel from natural resources, 

of lignocellulosic biomass has captured much interest in recent years4-7. Lignin, in particular, is a 

structurally complex biopolymer8, which currently is commercially utilized only for the fast 

pyrolysis9-10 generation of low-grade bio oil3 that is volatile and has been demonstrated to be of 

moderate utility11. The experimental catalysis community has been fascinated by the prospect of 

upgrading, or making more useful, lignin-derived bio oils through the catalytic removal of 

oxygen groups in a process known as hydrodeoxygenation or other more advanced catalytic 

routes, including using metabolic engineering4, 12-14.  

Nevertheless, the pyrolysis step to generate bio oil requires high temperatures and energy 

inputs and the bio oil product is not particularly stable for transportation. For that reason, 

understanding the structure of the unprocessed lignin polymer remains of interest8, 15. Recent 

experimental achievements have included depolymerization via polyoxometalate catalysts16, 

base-catalyzed hydrolysis17-18, acidolysis19-20, ionic liquid treatment21, reduction with 

hydrosilanes22, photochemical degradation23, and ball milling24. In addition to general 

depolymerization, efforts have also included selective strategies via homogeneous catalysts25-29 

and enzymes30.  A route to selective depolymerization that both prevents repolymerization and 

generates a specific set of monomers31 has only recently had success experimentally with the aid 

of metal catalysts32-33 capable of producing up to 50% yield.   

The natural structural complexity of the lignin biopolymer, which contains as many as 

eight known linkages between three monomeric units16, is critical to understanding how to design 

a catalyst for selective depolymerization. This complexity may at first be daunting for first-

principles, computational approaches due to the size of even minimal oligomers and their 

complex chemistry. Nevertheless, the complexity in polymeric feedstocks also mandates 

computational screening to identify the difference in local bonding environments in these 

complex molecules. In this work, we turn the problem of heterogeneous feedstocks on its head, 

proposing instead that substrate variability presents a rich selection of chemical bonds for study 
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and for future efforts as targets for computational and experimental design of selective catalysts, 

even as catalytic upgrading of bio oil continues to have successes in “making money” out of 

lignin, a notoriously intractable material. Lignin is noteworthy because it makes up roughly 20-

30% by weight34 of biomass. The key features of lignin as opposed to other components of 

biomass are that it is a heavily cross-linked polymer consisting of large numbers of phenolic 

moieties, making it the most abundant source of aromatic carbon in nature16. Lignin polymers are 

derived from p-coumaryl, sinapyl, and coniferyl alcohol monomers16 that differ by the presence 

(sinapyl, coniferyl) or absence (p-coumaryl) of methoxy groups functionalizing the aromatic ring 

common to each monomer (see Fig. 3 later in the text). The coniferyl alcohol monomer makes up 

90% of all softwood lignins16, which also have some of the highest concentrations of lignin, and 

contains a single methoxy group.  

A great deal of computational effort has been dedicated to studying model compounds 

that encapsulate some of the key linkages in lignin.  Major focuses have been on identifying 

homolytic bond dissociation energies35-36 and mechanical properties37-40, intramolecular hydrogen 

bonding41, kinetic modeling42-43, and the effect of ionic liquids44-45. The most prolific and 

thorough researchers in this area have been Beste and Buchanan, who have carried out a number 

of studies on both phenethyl phenyl-ether (PPE) and its methoxy form to understand free energy 

pathways for homolytic bond cleavage events for C-C bonds and C-O bonds that occur during 

pyrolysis using B3LYP46 and M06-2X functionals47. They followed up their initial work with 

further studies of bond dissociation enthalpies for additional substituted β-O-4 model 

compounds48, kinetic analysis42-43 including of phenyl-shift reactions with substituents on the 

phenyl ring vs. the phenyl ether42 and hydrogen abstraction49. More recently, Beste has studied 

selectivity for pyrolysis products in PPE and α-hydroxy-PPE50 and used reactive force fields to 

identify activation energy for conversions of dilignol model compounds51.  However, it is worth 

noting that few, if any, computational studies have been carried out on larger models of lignin.  

Only limited, combined experimental and theoretical studies52 have focused on the more complex 

chemistry of less abundant linkages. The more uniform cellulose has been very faithfully 

mechanistically and kinetically modeled computationally with relatively small model 

compounds53, but such an approach would not be possible on the more heterogeneous lignin. 
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Inspired in part by recent experimental and computational efforts in efficient mechanistic 

study of mechanochemical depolymerization54-60, we develop an alternative approach in which 

we employ steered molecular dynamics under constant force to understand lignin compound 

depolymerization. We focus here on models of lignin polymers comprised of coniferyl alcohol, 

the predominant monomer in softwood lignins. Our approach may be used to directly understand 

the effects of approaches that mechanically depolymerize lignin, such as ball milling24, but, more 

importantly, we employ it here as a screening technique to identify the weakest bonds in lignin 

models and to follow the dynamical processes that occur when these bonds are broken. Such 

direct observations are not possible in homolytic bond dissociation energy studies. We also study 

the pathways for bond-breaking, not making any assumptions about bond-breaking mechanisms 

and, in select cases, identify the distances at which recombination is most favorable.   

Following review of our screening methodology, we will present outcomes tested on 

lignin model systems. For these applications, we first present bond fragmentation patterns in 

small dimeric compounds, comparable to those studied previously in the literature. Next, we 

expand our studies to long, hexameric repeats that now include some of the polymeric character 

of lignin fragments.  Hexameric models represent the largest model compounds studied from 

first-principles to date, although reactive force fields have been previously used on hexamers61.  

We study the effect that the presence of acid or base model catalysts has on bond-breaking 

pathways and the associated threshold at which bond cleavage occurs.  Importantly, we observe 

unusual chemistries in branching models; namely 1) in a model of the recently discovered62-63 

spirodienone lignin linkage we observe over 23 unique pathways that result from our screen, and 

2) we observe that cleavage of ether bonds in the dibenzodioxocin linkage can destabilize the 

more intractable remaining biphenyl linkage, leading to spontaneous C-C bond cleavage.  

2. Screening Approach  

Here, we introduce a screening approach for identification of fragmentation patterns in 

lignin model compounds.  We employ an ab initio steered molecular dynamics approach that 

permits direct dynamics on the force-modified potential energy surface (FMPES). While this 

method has been previously demonstrated to be useful for mechanochemistry54-60, we are instead 

developing this approach as a screening method.  In any constant force dynamics method, an 
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attachment point (AP) is defined on the molecule that corresponds to an atom that is pulled at 

constant force to a pulling point (PP) that is a fixed point some distance away (examples of APs 

and AP-PP directions shown in Fig. 1). This external force is thus defined as: 

 Fext = Fi
i

AP

∑ ri
PP − ri

AP

ri
PP − ri

AP  , (0) 

where ri
AP/PP  is the position of the AP or PP and Fi  are the applied force values.  The total force 

in this approach is then a sum of the standard force from an ab initio evaluation of the gradient in 

addition to the applied external (ext) force: 

 Ftotal = Fab initio + Fext  . (0) 

Using this established approach, we recently reported59 the mechanochemically-induced 

depolymerization of a low-ceiling temperature polymer poly-o-phthalaldehyde. There, we 

observed that a heterolytic bond-breaking mechanism led to propagation of further 

depolymerization events, thus “unzipping” the polymer. This preliminary success inspired our 

current development of force-modified molecular dynamics in order to identify whether any 

conditions would permit the unzipping of lignin polymer to monomers (flowchart overview in 

Fig. 2). This ab initio molecular dynamics approach permits direct identification of what the 

most readily cleaved bonds are in a molecule. We run molecular dynamics simulations at 300 K, 

and in this study we apply forces in the range of 1.0-4.0 nN to accelerate cleavage of the lowest-

energy chemical bonds.  A force of around 3.0 nN is anecdotally comparable to the level of 

forces achieved in a typical sonication experiment54. Even for a relatively high force of 4.0 nN, 

structures do not become substantially distorted: an equilibrium C-C bond distance in an 

aromatic ring of 1.42 Å will sample bond distances in the range of 1.37-1.48 Å, commensurate 

with those sampled during other types of accelerated molecular dynamics (see Supporting 

Information). Therefore, while we are using force to ensure bond breaking, we are unlikely to be 

dramatically altering the geometric structure from geometries preferred on the force-unmodified 

potential energy surface.  Once a bond is cleaved, the simulation runs until the fragments reach 

the pulling points and the simulation is terminated. 
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Additional tunable parameters include, as with any electronic structure approach, the 

electronic structure method and the basis set employed.  Here, we employ the long-range-

corrected hybrid functional LRC-ωPBEh64 with a modest 6-31g basis set. While outside the 

scope of this work, it may be advantageous in this screening approach to direct the electronic 

structure method and basis set choice to one that is known to underestimate or overestimate 

certain bond dissociation energies.  All electronic structure methods will introduce some bias, be 

it overestimation of barrier heights in Hartree-Fock and high exact-exchange ratio hybrid 

functionals or underestimation in pure density functionals. This bias may then be directed 

towards enhancing sampling in the screening approach with subsequent energetic refinement at 

higher levels of theory. One may also accelerate such studies by choosing smaller basis sets, as 

was also used in the recently introduced “nanoreactor” for chemical discovery of bond-formation 

reactions65. There, reactions were dynamically discovered with a very minimal Hartree-Fock 

theory and 3-21g basis set combination, later followed-up by more detailed path-based 

transition-state search with hybrid exchange-correlation functionals and larger, polarized basis 

sets.   

Activation energies and transition states are outside the scope of this preliminary work, 

where we instead emphasize the scale of electronic structure calculations and dynamics that may 

be surveyed. Here, we have studied up to six monomeric units (hexamers) of the most common 

linkage in lignin both its standard form and in the presence of a catalyst. We also present 

extensive dimer and trimer models of all eight linkages in lignin.  We harness recent advances in 

stream processing hardware and algorithmic developments66-68 that have been demonstrated to be 

successful in proteins69-71 to accelerate this biopolymer-oriented screening approach. For those 

unfamiliar with TeraChem72 or typical GPU performance, our ωPBEh/6-31g calculations require  

10-30s/timestep on 2 GPUs for the dimer model and 60-110s on 2-4 GPUs for the hexamer.  

In order to give a sense of the scale of the screening effort, our dimer and trimer studies 

were carried out on 8 different linkages with a variety of attachment points, i.e. atoms on the 

molecules to which the force is directly applied (see Fig. 1).  Two gas-phase trajectories were run 

for each unique pair of attachment points, producing 50 4.0 nN trajectories that were each at least 

1.25 ps in length. This runtime corresponds to each calculation on a dimer taking about a day for 

a 0.25 fs timestep. The pulling points were placed 15 Å from the attachment points on the dimer. 
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A 4.0 nN force was chosen because it is on the higher side of experimentally reproducible forces 

in sonication experiments55-56, 59 and was likely to produce at least some bond-breaking events for 

the majority of linkages. Due to the high value of the applied force, attachment points were 

limited to sites on the rings of the lignin monomers, rather than terminal carbons.  

In the case of hexamers, we constructed these molecules from six repeats of coniferyl 

alcohol connected via five β-O-4 linkages with the same stereochemistry as the dimers (see Fig. 

3). Our screening approach on the hexamer model compounds features an examination of the 

force dependence as a proxy for identifying the efficacy of a model catalyst. We consider lower 

forces, which range from 1.0 to 3.5 nN, on the hexameric compound based on previous 

observations that lower forces are needed in larger molecules, likely due to compensating 

delocalization of electron density over larger fragments. Pulling points are placed 25 Å from the 

attachment points (methoxy carbons) on the hexameric compounds, in order to compensate for 

the longer length of the molecule. Since  larger molecules are more susceptible to breaking at 

lower forces and require longer distances between AP and PP to ensure that the fragmentation 

does not lead to pulling the APs to the PPs too quickly at higher force. Once the AP reaches the 

PP, there is no longer a force felt on the system and this could lead to disruption of the 

observation of dynamic rearrangements.  We emphasize here that the primary focus of this 

screening effort is to ensure the discovery of dynamic rearrangement following bond cleavage 

that is not as accessible in more commonly employed homolytic bond dissociation energy 

studies.  

Under the aforementioned constraints, we also introduce model catalysts and identify 

how their presence alters the force-dependent profile of cleavage events. Here we use hydronium 

ion to model acid catalysis and tertbutoxide anion to model base catalysis.  We place the species 

in the simulation and position them one at a time near each of the five linkages. In order to 

ensure sufficient statistics, we run five trajectories for each catalyst at each position for 2-3 ps for 

a total of 25 trajectories at each force value.  These studies permit the determination of whether 

any cleavage events differ strongly in the presence of a model catalyst. In order to carry out 

catalyst-design-based screens, one would more likely use model reaction mechanisms obtained 

during this initial screen and then carry out minimum-energy path search techniques. This 

subsequent screen would then focus on the known rate-determining step(s) using a most 
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abundant reactive intermediate – least stable transition state approach73-75 to maximize kinetic 

turnover. However, the current study focuses on identification and prediction of model 

compounds, paving the way for future study that will enable catalyst screening.  Our screening 

also likely identifies fragments that could form during experiments carried out under extreme 

environments such as pyrolysis or ball milling.  

3. Computational Methods 

We employ the TeraChem code to carry out ab initio steered molecular dynamics 

(AISMD) calculations55. By using an applied constant force in the range of 1.5 nN to 4.0 nN, we 

carry out dynamics directly on the force-modified potential energy surface (FMPES), as has been 

previously demonstrated, e.g. in Refs. 55, 57.  The AISMD simulations were carried out with 

unrestricted density functional theory (DFT) using the long-range-corrected, ωPBEh exchange-

correlation functional (ω=0.2)76 and the 6-31g basis set. All AISMD simulations were carried out 

with a 0.25 fs timestep. In order to encourage convergence, where favorable, to an unrestricted, 

radical solution, level-shifting (a 1.0 eV shift was applied to α states, 0.0 eV on β states)77. 

Hexameric acid and base catalysis studies were repeated with an accelerated implementation78 of 

the conductor-like implicit solvation model (COSMO)78-80 using a dielectric of ε=80, but there 

was no observed change to bond-breaking events. For cases where a variable force screening was 

completed, such as in the hexamer, once a force threshold was reached where 100% breaking 

was observed, only five trajectories were also completed at higher thresholds (e.g. 3.0 nN and 3.5 

nN for the acid and the base) to verify complete breaking occurred at these force thresholds. For 

each trajectory, natural bond orbitals (NBO) were obtained using the NBO681 interface to 

TeraChem. The NBO analysis categorizes transformed orbitals as core, two-center or three-

center bonding orbitals, and lone pairs for the generation of Lewis structures. This analysis also 

categorizes the extent of electron density that is non-Lewis in nature. The occupancy of each 

Lewis-like lone pair NBO may be assessed, with distinct spin up and down orbitals centered 

around the cleaved bond corresponding to radical, homolytic cleavage.   

4. Results and Discussion 

4a. Dimer studies 
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An ongoing goal for lignin utilization is to effectively decompose the complex polymer 

into useful valuable chemicals. When bonds in lignin are cleaved, a large variety of products 

may be formed, and the variability in products of pyrolysis or other depolymerization processes 

leaves lignin the most underutilized component of biomass82. One select linkage, the β-O-4 ether 

(C-O-C) linkage, represents around 50% of the lignin monomer linkages in most woods, while 

the other types of linkages including 5-5’ biphenyl linkage (aromatic C-C), β-5, and 4-O-5 diaryl 

ether represent no more than 25% individually of the remaining linkages (see structures in Fig. 3 

and abundance in Fig. 4)34. 

For preliminary studies of dimers and trimers, we assembled coniferyl alcohol monomers 

to produce the eight most common linkages in softwood lignin: β-O-4 (abundance, ab=46%), 5-5 

(ab=23.5%), β-5 (ab=10%), dibenzodioxocin (ab=6.5%), 4-O-5 (ab=5.5%), β-β (ab=3.5%),  β-1 

(ab=3%), and spirodienone (ab=2%)16 (see also abundances in Fig. 4).  Dimer studies provided a 

preliminary screen to identify which linkages were most amenable to mechanochemical bond-

breaking for subsequent larger-scale simulations. For each dimeric linkage, we carried out 50 4.0 

nN steered MD simulations (1-4 ps in length) and report the percentage of simulations that lead 

to bond cleavage alongside the abundance in softwood lignin (see Fig. 4) and range of times at 

which bond cleavage occurs (see Supporting Information).  We note that cleavage frequency 

corresponds to the likelihood of observation of a breaking event at our constant 4.0 nN, bond 

dissociation energies (see Supporting Information) are likely more comparable with force-

dependent cleavage profiles, as we carry out later in this work when evaluating model acid/base 

catalysts (see Sec. 4d). We also discuss how attachment point choices influence cleavage 

frequency in more detail in Sec. 4c. Dibenzodioxocin and spirodienone linkages are minimally-

defined by three monomers, and an even larger number of simulations, 112 and 150, respectively 

were carried out on these trimers. Stereochemistry, where applicable, is indicated in Fig. 3 for 

each compound. Bond cleavage primarily occurs early on in these simulations (~250-500fs), but 

dynamics are continued for at least around 3 ps to capture rearrangement and relaxation after 

cleavage. The relatively rapid observation of cleavage events motivates this force-based 

screening approach (requiring only ~1000-10,000 gradient evaluations) as a screening technique 

to identify bond fragmentation because such events would take nearly infinite timescales in 

direct Born-Oppenheimer molecular dynamics at moderate temperatures. Conversely, path-based 
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searching techniques would require a priori knowledge of the reactant and product endpoints 

involved in fragmentation. There are a few notable exceptions to the rapid cleavage timescales. 

Some slower bond-cleavage (~2 ps) was observed for β-O-4 linkages, and these late cleavage 

events suggest that the percentage of bond cleavage events might increase if dynamics were 

continued for longer timeframes (see Supporting Information).  When cleavage occurred on 

longer timescales for other linkages (e.g. spirodienone), this delay was primarily the result of 

sequential bond-cleavage events.  

The predominance of both β-O-4 and 5-5 linkages in softwood lignin make them of 

primary interest for any computational lignin study.  However, we observed no bond-breaking 

events for 5-5 linkages, due to the fact that cleavage of this biphenyl-like C-C linkage 

necessitates disruption of  the aromaticity of both of the monomers’ phenolic rings.  Inclusion of 

specific model catalysts capable of cleaving C-C bonds would likely be necessary to facilitate 5-

5 cleavage during these steered MD simulations, but we will revisit 5-5-like cleavage shortly in 

the context of dibenzodioxocin trimeric branching linkages (see Sec. 4b). The less abundant 

(ab=5.5%) 4-O-5 linkage also has a relatively low cleavage frequency (cf=4%). In this case, the 

phenyl groups of neighboring monomers are linked through an ether bond, and the rarely 

observed (C-O) cleavage events occur through formation of a  benzene radical fragment, which 

is subsequently stabilized through hydrogen transfer (see Supporting Information). 

In contrast to 5-5 linkages (cf=0%), the β-O-4 linkage breaks frequently in our 

simulations (cf=56%). Two primary pathways were observed for the cleavage of β-O-4 linkages: 

one involved simple homolytic bond cleavage of the C(β)-O bond and separation to radical 

fragments, while the other involved homolytic bond cleavage followed by hydrogen transfer 

leading to closed shell fragments (Fig. 5). In the former case, this mechanism is identical that has 

been proposed before for β-O-4 homolytic bond cleavage (e.g. see Fig. 4g in Ref. 51), thus 

validating that we are not substantially diverging from previous computational studies through 

incorporation of a steering force. In the second case, the transferred hydrogen atom originated 

either from a neighboring alcohol group or directly from the adjacent carbon atom, leading to 

either aldehyde or enol products (for a total of three overall pathways). We selected snapshots of 

monomers after cleavage at various separation distances to identify whether fragments would 

recombine or rearrange once the constant force was turned off. Recombination did not occur for 
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separation distances greater than 2.3 Å, but hydrogen transfer continued for distances up to 5 Å. 

These recombination studies suggest a predominant mechanism of homolytic bond cleavage to 

form radicals followed by hydrogen atom transfer to produce closed shell fragments.  

 A number of homolytic bond dissociation energy studies35-36, 47-48 have been carried out on 

models, particularly of the β-O-4 linkage. In these studies, there has been considerable focus on 

the effect that functionalizing groups can have on bond dissociation energies. In light of these 

studies, we added a hydroxyl group to the α-carbon in the β-O-4 dimer and repeated the steered 

MD studies with two trajectories at each of the 25 combinations of pulling points. In this case, 

the presence of the α-hydroxy changes the stereocenter for the β-O-4 linkage (see Fig. 3) from R 

to S, although the geometry is unchanged. The mechanisms for cleavage are unchanged from 

those observed in the absence of the α-hydroxy functionalization (see Fig. 5), consistent with 

previous observations that this functionalization does not strongly alter homolytic bond 

dissociation energies47. However, we do observe seven more breaking events for an overall 14% 

higher cleavage frequency. Higher numbers of trajectories at additional force thresholds would 

likely be necessary to ascertain if the increased cleavage frequency observed in the 

functionalized β-O-4 linkage over the pristine linkage is significant. Indeed, homolytic bond 

dissociation energy calculations would likely be a more suitable tool for identifying subtle 

changes in the bond strength of linkages upon functionalization. The force-modified molecular 

dynamics approach is instead more suitable for sampling possible mechanisms of bond cleavage 

and subsequent dynamic rearrangement following cleavage. 

The low-abundance (ab=3%) β-1 linkage is relatively analogous to β-O-4, but here the 

β carbon of the first monomer is bonded directly to the phenyl ring of the second monomer, 

rather than through an ether linkage. The absence of an easily cleaved ether bond reduces the 

fragmentation frequency to cf=18%, with the most commonly observed fragmentation pathway 

involving homolytic cleavage between the α and β carbon. A second, minor cleavage pathway 

involves direct homolytic cleavage of the bond between the β carbon and the second phenyl ring, 

leaving a phenyl radical and an alkyl radical at the β position. In one of the two trajectories 

following this second pathway, the alkyl radical proceeded to abstract a hydrogen atom from the 

neighboring γ carbon, leading to the formation of a C-O double bond. This event was followed 
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by the transfer of the γ-hydroxyl hydrogen to the phenyl radical, yielding closed-shell phenyl and 

aldehyde fragments (see Supporting Information). While the highly abundant β-O-4 linkages will 

be the focus of our study of larger oligomers, we have thus also identified bond-cleavage patterns 

in diverse linkages for further comparison and to identify the relative variability in possible 

fragmentation pathways.   

Of all the linkages considered, the β-β linkage (ab=3.5%) had the highest occurrence 

(cf=92%) of bond cleavage.  This linkage is symmetric and consists of two five-membered rings 

fused at the β-carbons of each monomer, with the γ-hydroxyl group of each monomer forming 

an ether bond to the α carbon of the other monomer to close the five-membered ring.  We 

consistently observe a simultaneous, double electrocyclic reaction, in which the β and γ carbons 

of both monomers are released as a free 1,3-butadiene molecule.  Each monomer retains the γ-

hydroxyl oxygen of the other monomer to form two neutral aldehyde-terminated fragments (Fig. 

6). In contrast to β-β, the moderately abundant (ab=10%) β-5 linkage has few cleavage events 

(cf=4%) where the five-membered ring opens, with the γ carbon and its attached hydroxyl group 

is released as a free formaldehyde molecule, but further fragmentation to monomers does not 

occur (See Supporting Information). These contrasting cases suggest that the dissociation of 

linkages should be investigated carefully on a case-by-case basis, and a follow-up study will be 

focused on using more detailed charge and bonding analysis to reveal structure-property 

relationships in these cleavage events when in the presence of model catalysts.  

4b. Trimer studies 

Dibenzodioxocin is a linkage formed from three monomers that is characterized by an 

eight-membered ring comprised of two 5-5 linked phenyl groups and a third monomer attached 

to the first two monomers via β-O-4 and α-O-4 linkages, respectively.  Relatively low breaking 

frequency (cf=16%) in dibenzodioxocin is likely due to the fact that differing simulations 

contained different pulling point and attachment point combinations that distribute the force 

across different parts of the molecule distinctly, with a large subset effectively stressing only the 

5-5 linkage (see more discussion in Sec. 4c). We have previously observed the absence of 

cleavage events in the case of pure 5-5 dimers. For dibdenzodioxocin, initial cleavage occurs at 

one of the ether linkages.  However, notably, we observed in one case that initial cleavage of 

both ether linkages leads to release of one monomer (see Supporting Information), with the 
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typically inert 5-5 link between the remaining dimeric fragment breaking apart in the ensuing 

rearrangement (Fig. 7).  Distortion of the rings is apparent in Fig. 7 due to the fact that the initial 

double bond cleavage disrupts aromaticity of the phenyl rings, and this electronic rearrangement 

likely facilitates cleavage of the normally inert C-C bond. Notably, once the ether linkages are 

cleaved, there is no formal pulling force across the molecule any longer. The dynamics continues 

with the energy present in the system following bond cleavage and the remaining fragment is 

pulled on a single AP towards a PP. While the molecule has translational velocity, this portion of 

the simulation approximates standard ab initio molecular dynamics. Following this observation 

of β-O-4-induced 5-5 cleavage, we carried out several simulations on 5-5/β-O-4/5-5 tetramers.  

We observed cleavage to occur 100% of the time at the β-O-4 linkage with no subsequent 

rearrangement of 5-5 bonds. This result suggests that the conditions required for 5-5 cleavage in 

mixed linkage models are relatively specific to the strain and local chemistry.  Study of mixed 5-

5 and β-O-4 linkages in rings, linear, and branched chains in order to identify whether we can 

induce 5-5 cleavage through cleavage of neighboring β-O-4 linkages will be the focus of future 

work.  

The final minimal linkage considered here, spirodienone, differed from the other linkages 

in that instead of one or two distinct fragmentation pathways, this linkage was observed to 

exhibit 23 distinct cleavage pathways. Because there are several different bonds in this linkage 

susceptible to force-initiated cleavage, a variety of intermediate species appeared in the course of 

the dynamics runs. While their abundance is relatively low, the three-monomer linkages 

(spirodienone and dibenzodioxocin) are potentially important as they are the origin of cross-

linking that contributes to the general difficulty in the valorization of lignin biomass. Of these 

two, spirodienone is much more susceptible to cleavage (cf=69% vs. 16% in dibenzodioxocin), 

and thus offers the greater potential as an avenue toward unraveling the polymer. Nevertheless, 

spirodienone is probably the least well-known of lignin linkage structures, having only been 

discovered by NMR in 200162. Future studies are underway aimed at identifying the most 

important cleavage pathways, and determining how the reactive intermediates involved in these 

pathways would behave in the presence of other adjacent linkages. Spirodienone remains 

emblematic of the complex chemistry present in lignin that has still yet to be fully understood. 

4c. Dependence of cleavage on simulation conditions 
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 We previously noted that cleavage frequency is not strictly comparable to bond 

dissociation energy and force dependent profiles are more likely to give useful statistics. Bond 

cleavage events are inherently sensitive to the relative orientation of the two attachment points 

on the molecule that we choose during a pulling study. In the case of each dimer or trimer, 25 

possible pulling point combinations were selected, and two trajectories were run for each 

attachment point combination. From a discovery perspective, one advantage to our steered MD 

approach is that different attachment points may bias towards distinct cleavage mechanisms,  

permitting identification of pathways that might have been excluded based on chemical intuition. 

This variability led to observation of 23 unique fragmentation pathways in the spirodienone 

linkage. However, for cases where only a few pathways were observed, it is also useful to note 

the dependence of cleavage on the combination of attachment points in order to identify whether 

certain combinations apply uneven or insufficient stress to the cleaving bond.   

For analysis, the type of attachment point combination is classified by whether the 

attachment point is ortho, meta, or para to the phenyl ring carbon that is closest to the linking 

bond (recall that this carbon is excluded from the attachment points).  The strictly para/para and 

para/meta combinations are designated as more longitudinal force being applied along the axis of 

the cleaving bond and correspond to 10 out of 50 trajectories for each dimer. The most transverse 

applied forces, which would be equivalent to bending or torqueing the cleaving bond, correspond 

to ortho/ortho or meta/ortho combinations (24 out of 50 trajectories for each dimer).  The 

remaining meta/meta and ortho/para attachment point configurations are classified as 

intermediate (16 out of 50 trajectories for each dimer).  The cleavage frequencies within each 

class of attachment points is provided in Table 1, and we note that these frequencies must be 

reweighted by the number of trajectories in each class in order to compare to the total cleavage 

frequency provided earlier in the text. Cleavage statistics on dibenzodioxocin are also provided 

in two forms: 1) the total cleavage for longitudinal (32 out of 112 trajectories), intermediate (8 

out of 112 trajectories), and transverse (72 out of 112 trajectories) and 2) delineated by 

attachment points across each individual linkage (5-5, α-O-4, or β-O-4).  The overall statistics 

across the lignin models indicate that bond cleavage events are distributed across all types of 

applied force: 32% for longitudinal (L), 38% for intermediate (I), and 33% for transverse (T).   



Mar, Qi, Liu, and Kulik – Mechanochemical lignin depolymerization – Page 15 

 

 

Results on individual models, however, suggest that different types of applied forces are 

more suitable for different types of linking bonds.  Bending forces are more effective in β-1 (0% 

L, 25% I, and 21% T cf) For both β-5 and 4-O-5, cleavage frequency is too low to provide a 

definitive statement but is also suggestive of a preference for intermediate and transverse applied 

forces, also suggesting that more trajectories could be run in these combinations in order to 

enhance sampling of pathways corresponding to breaking events in future work. In the β-β 

linkage, this trend is reversed (100% L, 81% I, and 75% T cf), though we note very high overall 

cleavage frequencies.  Notably, the β-β bond itself is at a slight angle with respect to the closest 

phenyl ring carbons, and a probable mechanism is that the longitudinal force applies the most 

stress to the outer rings that the β-β bond bisects.  The dibenzodioxocin trimer also prefers 

longitudinal force overall, with longitudinal and transverse being the predominant method for 

cleaving α-O-4 (42% L, 50% I, 29% T cf) as well as β-O-4 (17% L 0% I, 8% T cf) linkages.  

Applying force directly in any combination to the 5-5 linkage of dibenzodioxocin did not lead to 

cleavage events, consistent with observations in the 5-5 dimer.  Observations on the β-O-4 

linkage are mixed and would require more statistics to interpret whether differences between the 

unfunctionalized and α-hydroxy β-O-4 are significant. Namely, we previously noted a 14% 

increase in overall cleavage frequency in the presence of an α-hydroxy for β-O-4, and this 

appears to shift the preference from transverse for standard β-O-4 (40% L, 38% I, 75% T) to 

longitudinal for those with α-OH present (80% L, 75% I, 71% T). Overall, both linkages show 

cleavage regardless of the type of force applied.  The overall and individual linkage statistics 

suggest that all forms of applied force will be suitable for discovery of cleavage pathways, 

though in some cases, more sampling of applied intermediate or transverse forces would be ideal 

for maximizing the number of cleavage pathways observed.  

4d. Hexamer studies 

We now shift focus to a different screening approach from those observed with minimal 

models to identifying the dynamic effects of bond cleavage on larger-scale oligomers. To our 

knowledge, hexameric models of lignin containing β-O-4 linkages represent the largest models 

of lignin that have been studied with first principles simulations. However, there have been some 

successful efforts in experimentally synthesizing such compounds83-84 in order to better 
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understand the biological synthesis of lignin during plant growth. Our initial motivation for 

studying larger models of the well-studied β-O-4 ether linkage was to identify whether bond-

breaking events propagate in a manner at all analogous to our previous observations with low-

ceiling temperature polymers59.  Similarly, we screened for breaking events at a range of lowered 

force thresholds (as low as 1.0 nN and as high as 3.5 nN) in order to identify whether cleavage 

events occurred at lower forces as they did in other polymers we have previously studied. 

Additionally, the force-dependent breaking ratio (i.e. how many simulations lead to cleaved 

products at a given force) gives us information about the minimum force to cleave a bond in the 

presence or absence of a catalyst. This information allows us to identify better catalysts as those 

that will lower the force threshold at which bond cleavage occurs. Such studies also permit 

dynamic rearrangement after the catalytic cleavage, allowing for identification of any side 

reactions or other unexpected steps not normally considered in more commonly employed 

minimum energy pathway studies of catalysis. 

While we did observe some double and triple breaking events in the hexameric models, 

these cleavage events were typically simultaneous and corresponded to equivalent breaking 

events occurring at either end of the molecule. This multiple-cleavage event mechanism was 

primarily observed at the highest forces (3.5 nN) employed. The cleavage threshold for breaking 

events was between 2.0 and 2.5 nN with a cleavage frequency of around 40% for 2.25 nN pulling 

force (model of the hexamer and force-dependent cleavage-frequency shown in Fig. 8). We did 

not screen for force-dependent breaking thresholds in the earlier minimal dimer models where 

we instead aimed to maximize bond-breaking. As in the case of the dimer, the hexamers here 

have R stereocenters (see Fig. 3 for stereocenter indication on dimer model). Regardless of force 

applied, we note that there is no change in the mechanism observed for bond cleavage. While in 

small molecules, it has been observed that mechanical force can subtly change ring-opening 

mechanisms in violation of the Woodward-Hoffman rules55, our observation that very low forces 

lead to the same cleavage patterns suggest that ether bond cleavage is unperturbed by the use of 

force-modified molecular dynamics. The only alternative pathway observed in the hexamer but 

absent in the dimer was formation of a phenol and epoxide at 2.25 nN. Here, we have sampled a 

greater number of possible initial configurations and dynamics by running at least 25 trajectories 

at each force and we have five copies of each linkage in the hexamer, versus one in the dimer. In 
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contrast to our observations in β-O-4 hexamers, random hexamers studied with high temperature 

(1650-2300 K) reactive force field molecular dynamics simulations61 yielded degradation to a 

wider array of products, including a number of polycyclic compounds. These compounds were 

traced to the rearrangement after cleavage of other bonds such as 5-5 and β-5 not present in our 

hexamer models. 

 Following confirmation that the hexameric models of β-O-4 ether linkages behaved 

largely similar to the dimeric models, we then considered whether we could identify mechanisms 

by which a model acid or base catalyst might alter the cleavage events in this oligomer.  We 

continued to work with the larger model for two reasons: 1) use of the hexamer allowed us to 

probe whether acid/base catalyzed mechanisms were sensitive to the location of the cleaving 

bond in the oligomer and 2) hexamer models break at lower force profiles, giving us access to a 

wider range of forces over which we can assess cleavage frequency than in the case of the 

smaller dimers. In order to probe the role of the model acid in catalyzing bond cleavage, we 

placed an acid (hydronium ion) at each of five possible sites adjacent to the ether linkage (see 

Fig. 8).  Then we ran sampling dynamics of at least five trajectories for each placement.  We 

observe a significant reduction in the force at which cleavage first occurs (cf > 60% at 1.5 nN) 

when in the presence of the acid.  However, the major chemical pathways (see Fig. 5 and 

Supporting Information) are largely unchanged with respect to the uncatalyzed hexamer. The 

major uncatalyzed pathways in the presence of an additional proton form a phenol/carbocation 

combination or a protonated phenol/enol by analogy. There is a bit more variety in the 

subsequent rearrangements for the acid case than in the uncatalyzed simulations, since the 

intermediates are fairly unstable. Formation of a protonated epoxide is a common rearrangement 

observed in our trajectories.  Such species may be of use for further study in identifying the 

structures formed during recently successful experimental observations of lignin 

depolymerization by formic acid20.  We also considered whether functionalization by α-hydroxy 

groups would have a larger effect in the case of hexamers both with and without acid.  In select 

acid catalysis pathways, protonation occasionally occurred at the hydroxyl rather than at the 

ether. This latter observation is more consistent with the pathways proposed by Sturgeon et al.19, 

which begin from the assumption of the protonation of the additional hydroxyl functional group. 

The discrepancy here arises in that we preferentially placed the hydronium ion adjacent to the 
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ether bond, enhancing the likelihood of a protonated ether bond. Our simulations definitively 

demonstrate that protonation of the ether bond lowers the barrier for cleavage of the β-O-4 

linkage. However, it might be interesting to carry out more simulations that start from β-O-4 

models that have protonated α-hydroxyl functional groups in order to identify whether biasing 

instead towards that mechanism will lower the barrier for cleavage in a manner that is distinct 

from the ether bond protonation mechanism that predominates in our study. Aside from this 

alternate pathway, both acid-catalyzed and uncatalyzed hexamer cleavage patterns were 

unchanged by α-hydroxy functionalization. 

For the study of base-mediated catalysis, we used the tertbutoxide anion, which is a 

strong base but poor nucleophile. By using a poor nucleophile, we thus prevent observation of  

direct nucleophilic attack in our simulations. As in the acid case, we see reduction in the force 

threshold at which bond cleavage occurs, but this effect is not as pronounced (cf ~ 20% at 1.5 

nN). Overall, the force-dependent profiles show that at higher forces (2.0 nN-2.25 nN) the base 

catalyst cleavage frequencies nearly approach the acid catalyst but not quite, suggesting that the 

base is acting as a slightly weaker catalyst for ether bond cleavage. Nevertheless, both acid and 

base catalyzed pathways produce a significant majority of cleaved pathways at intermediate 

forces (2.0 nN-2.25 nN) where the uncatalyzed pathways only have cleavage in 40% of all 

trajectories at the higher 2.25 nN force and only reach 100% cleavage at 3.0 nN. In the base, the 

cleavage mechanism largely occurs via deprotonation of the nearby γ-hydroxyl, creating a good 

nucleophile for intramolecular attack leading to cyclization and loss of the ether leaving group. 

This mechanism is the same as that proposed in previous base-catalyzed experimental studies 

(scheme 3 in Ref. 85). In the case of position #4, we observe some different behavior. When the 

base is not positioned well to abstract a proton from the hydroxyl, cleavage occurs as in the 

uncatalyzed case, but with subsequent attack of the base on the radical fragment (see Supporting 

Information). There are again, as in the uncatalyzed case, a few double cleavage events. For one 

double cleavage event, the α-β C-C bond is cleaved, which is the only time a β-O-4-containing 

lignin model breaks somewhere other than at the ether bond in our simulations. This C-C bond 

cleavage also occurs down the chain, not at the position where the base is initially placed. Such 

unusual dynamics in base-catalyzed lignin models will be probed with future work in which we 

also consider good nucleophilic bases and those that have been observed to be effective catalysts 
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experimentally18.  We also note that α-hydroxy functionalization had no discernible effect on the 

base-catalyzed mechanisms with respect to the pristine β-O-4 models. 

5. Conclusions 

 We have demonstrated the first force-based ab initio molecular dynamics screening 

approach for the chemical discovery of bond cleavage events.  Our method builds on the already 

well-established tools for identifying mechanochemical bond cleavage in polymers in the 

chemistry community. However, we have turned this successful approach on its head to discover  

the heterogeneity in products that can be formed when any kind of bond cleavage occurs in the 

highly heterogeneous lignin biopolymer. While microkinetic models have been quite successful 

in modeling the homogeneous cellulose polymer with models that are smaller than the ones we 

have considered in our study, understanding how to utilize, upgrade, and catalytically convert 

lignin into value-added products is an ongoing challenge.    

Our approach has permitted the confirmation of previous observations, namely that ether 

bonds cleave readily in lignin polymers and that biphenyl linkages are more recalcitrant. 

Additionally, we have carried out, to our knowledge, the first screen of all known model linkages 

of lignin, including two branched linkages, using one first principles computational screen. This 

breadth comes at a natural cost of reduced detail with respect to analysis on any single linkage. 

Future work will allow us to provide more insights into the cleavage of linkages in lignin both by 

examining more commonly studied effects such as the impact of ring functionalization on bond 

cleavage and more electronic-structure-based analysis on fragmentation patterns. Nevertheless, 

with this newly introduced approach, we have identified for the first time that spirodienone 

branching linkages can fragment into many possible products with high frequency of cleavage. 

Additionally, we have identified in one case where breaking an “easy” to break ether bond also 

results in the spontaneous cleavage of a harder to break biphenyl-like bond. In the case of larger 

models of the polymer, we confirmed that cleavage events are unchanged by chain lengthening, 

but that force-dependent screens can provide a handle for identifying the relative activity and 

mechanism of a class of catalysts. Our rapid GPU-accelerated density functional theory approach 

has permitted the study of the dynamics of thousands of individual bond cleavage events. Such 

sampling and screening is crucial in lignin where the high heterogeneity of the structure 
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necessitates sampling. Notably, we have only identified likely chemical mechanisms and 

fragmentation patterns under the circumstance in which cleavage occurs. We have not yet carried 

out studies of the enthalpies of the bond-dissociation energies, but we have instead used ab initio 

molecular dynamics to explore a force-modified potential energy surface where the bond 

cleavage is barrierless.  

Future work will be focused towards the development for catalyst screens to lower 

enthalpic and free energy barriers for the dissociation mechanisms we have observed in model 

linkages. Although our priority has been in the evaluation of dynamic rearrangement following 

cleavage, bond-dissociation energies remain a common point of comparison for evaluating 

properties of lignin models.  Future work will also focus on comparison of our dynamic approach 

to bond dissociation energies by carrying out more fine-grained force-dependent cleavage 

statistics. We are also interested in identifying ways to generalize the observations we have made 

in the dibenzodioxocin linkage to identify how to destabilize the recalcitrant biphenyl-like 5-5 

linkages in lignin by modifying and destabilizing the most probable adjacent molecular 

fragments. Much work is left to be done in still discovering the organic chemistry and electronic 

structure of lignin model compounds and lignin polymers. While commercialization is already 

underway of the treatment of lignin-derived bio-oil, there remain many mysteries left to unravel 

in the complex heterogeneous polymers that make up biomass.    

Supporting Information 

(i) Schematics of mechanisms for 5-5, β-1, β-5, and 4-O-5 rupture in dimer models, (ii) 

snapshots from initial β-O-4-like cleavage of dibenzodioxocin, (iii) additional hexamer acid-and 

base- catalyzed breaking pathways, (iv) extended bond-breaking statistics for various linkages of 

dimers and trimers, and (v) comparison of variation in C-C bond lengths across molecular 

dynamics trajectory. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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Figure 1. Example trimeric linkage (dibenzodioxocin) with possible sites for attachment points 

(labeled in green, pink, and yellow spheres for fragments A, B, and C, as indicated in the 

legend). Two attachment points are pulled with a steering force to a distant pulling point along 

the blue force vector indicated by a blue arrow.  
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Figure 2. Flowchart for enhanced screening approach to identify depolymerization pathways in 

lignin.  Tunable screening parameters are indicated on the left-hand side in gray trapezoids, 

while the main computational effort is the MD screening to yield depolymerization pathways, 

possibly in the presence of model catalysts (indicated by dashed arrow).  
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Figure 3. Structure of coniferyl alcohol monolignol and eight lignin linkages formed by the 

monolignol.  Single-bond, dimeric linkages are indicated with black structures and linking bonds 

indicated in blue.  Multi-bond dimeric and trimeric linkages are indicated with red, blue, and 

green color to designate each monomer unit and key linking bonds highlighted with thickened 

black lines.  Stereochemistry is indicated on each model by a gray circle for R stereocenters and 

an orange circle for S stereocenters. 
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Figure 4. Percentage of natural abundance (gray bars) as well as observed cleavage frequency 

for eight lignin linkages (red bars). The abundance sums overall to 100% while the cleavage 

frequency may be individually up to 100% for a given linkage. Spirodienone is abbreviated as 

spiro, and dibenzodioxocin is labeled dibenzo. 
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Figure 5. Three observed mechanisms for homolytic cleavage of β-O-4 linkage in coniferyl 

alcohol dimers or hexamers. The first case involves dissociation to radical products, while the 

latter two exhibit proton transfer to lead to closed shell fragments.  
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Figure 6. Primary mechanism of β-β dimer linkage cleavage observed in 4.0 nN steered MD.  A 

double electrocyclic ring cleavage leads to a free 1,3-butadiene molecule and two neutral 

aldehyde-terminated monomers.  
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Figure 7. Snapshots from the cleavage of a 5-5-like bond in the dibenzodioxocin sequential 

cleavage pathway labeled with the timing of each frame from the steered molecular dynamics 

run. No force is being formally applied across the molecule.  
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Figure 8. (Top) Model of a hexamer of lignin with the five linkages indicated and numbered in 

blue. The acid (hydronium) and base (tertbutoxide) model structures are also shown alongside 

their relative placement during dynamics. (Bottom) Steering-force dependence of the cleavage 

statistics for acid, base, and uncatalyzed β-O-4 hexamer lignin models obtained at forces ranging 

from 1.5 nN to 3.5 nN.  
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Table 1. Cleavage frequency for representative lignin dimers and trimers classified by type of 

force applied to the linkage. The dibenzodioxocin trimer cleavage statistics are also subdivided 

by the different types of linkages being stressed. 

Linkage Longitudinal Intermediate Transverse 

β-O-4 40% 38% 75% 

β-O-4 w/ α-OH 80% 75% 71% 

4-O-5 0% 6% 4% 

β -1 0% 25% 21% 

β - β 100% 81% 75% 

β -5 0% 0% 8% 

dibenzodioxocin  22% 25% 13% 

5-5 0% -- 0% 

α-O-4 42% 50% 29% 

β-O-4 17% 0% 8% 

Overall 32% 38% 33% 
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