28,618 research outputs found

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    Measurement of J/Psi and Psi(2S) Polarization in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.Comment: Revised version, accepted for publication in Physical Review Letter

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards

    Coronary bypass surgery with or without surgical ventricular reconstruction

    Get PDF
    Coronary bypass surgery with or without surgical ventricular reconstruction. Jones RH, Velazquez EJ, Michler RE, Sopko G, Oh JK, O'Connor CM, Hill JA, Menicanti L, Sadowski Z, Desvigne-Nickens P, Rouleau JL, Lee KL; STICH Hypothesis 2 Investigators. Collaborators (379)Bochenek A, Krejca M, Trusz-Gluza M, Wita K, Zembala M, Przybylski R, Kukulski T, Cherniavsky A, Marchenko A, Romanov A, Wos S, Deja M, Golba K, Kot J, Rao V, Iwanochko M, Renton J, Hemeon S, Rogowski J, Rynkiewicz A, Betlejewski P, Sun B, Crestanello J, Binkley P, Chang J, Ferrazzi P, Gavazzi A, Senni M, Sadowski J, Kapelak B, Sobczyk D, Wrobel K, Pirk J, Jandova R, Velazquez E, Smith P, Milano C, Adams P, Menicanti L, Di Donato M, Castelvecchio S, Dagenais F, Dussault G, Dupree C, Sheridan B, Schuler C, Yii M, Prior D, Mack J, Racine N, Bouchard D, Ducharme A, Lavoignat J, Maurer G, Grimm M, Lang I, Adlbrecht C, Religa Z, Biederman A, Szwed H, Sadowski Z, Rajda M, Ali I, Howlett J, MacFarlane M, Siepe M, Beyersdorf F, Cuerten C, Wiechowski S, Mokrzycki K, Hill J, Beaver T, Olitsky D, Bernstein V, Janusz M, O'Neill V, Grayburn P, Hebeler R, Hamman B, Aston S, Gradinac S, Vukovic M, Djokovic L, Benetis R, Jankauskiene L, Friedrich I, Buerke M, Paraforos A, Quaini E, Cirillo M, Chua L, Lim C, Kwok B, Kong S, Stefanelli G, Labia C, Bergh C, Gustafsson C, Daly R, Rodeheffer R, Nelson S, Maitland A, Isaac D, Holland M, Di Benedetto G, Attisano T, Sievers H, Schunkert H, Stierle U, Haddad H, Hendry P, Donaldson J, Birjiniuk V, Harrington M, Nawarawong W, Woragidpunpol S, Kuanprasert S, Mekara W, Konda S, Neva C, Hathaway W, Groh M, Blakely J, Lamy A, Demers C, Rizzo T, Drazner M, DiMaio J, Joy J, Benedik J, Marketa K, Beghi C, De Blasi M, Helou J, Dallaire S, Kron I, Kern J, Bergin J, Phillips J, Aldea G, Verrier E, Harrison L, Piegas L, Paulista P, Farsky P, Veiga-Kantorowitz C, Philippides G, Shemin R, Thompson J, White H, Alison P, Stewart R, Clapham T, Rich J, Herre J, Pine L, Kalil R, Nesralla I, Santos M, Pereira de Moraes M, Michler R, Swayze R, Arnold M, McKenzie N, Smith J, Nicolau J, Oliveira S, Stolf N, Ferraz M, Filgueira J, Batlle C, Rocha A, Gurgel Camara A, Huynh T, Cecere R, Finkenbine S, St-Jacques B, Ilton M, Wittstein I, Conte J, Breton E, Panza J, Boyce S, McNulty M, Starnes V, Lopez B, Biederman R, Magovern J, Dean D, Grant S, Hammon J, Wells G, De Pasquale C, Knight J, Healy H, Maia L, Souza A, McRae R, Pierson M, Gullestad L, Sorensen G, Murphy E, Ravichandran P, Avalos K, Horowitz J, Owen E, Ascheim D, Naka Y, Yushak M, Gerometta P, Arena V, Borghini E, Johnsson P, Ekmehag B, Engels K, Rosenblum W, Swayze R, Amanullah A, Krzeminska-Pakula M, Drozdz J, Larbalestier R, Wang X, Busmann C, Horkay F, Szekely L, Keltai M, Hetzer R, Knosalla C, Nienkarken T, Chiariello L, Nardi P, Arom K, Ruengsakulrach P, Hayward C, Jansz P, Stuart S, Oto O, Sariomanoglu O, Dignan R, French J, Gonzalez M, Edes I, Szathmarine V, Yakub M, Sarip S, Alotti N, Lupkovics G, Smedira N, Pryce J, Cokkinos D, Palatianos G, Kremastinos D, Stewart R, Rinkes L, Esrig B, Baptiste M, Booth D, Ramaiah C, Ferraris V, Menon S, Martin L, Couper G, Rosborough D, Vanhaecke J, Strijckmans A, Carson P, Dupree C, Miller A, Pina I, Selzman C, Wertheimer J, Goldstein S, Cohn F, Hlatky M, Kennedy K, Rankin S, Robbins R, Zaret B, Rouleau J, Desvigne-Nickens P, Jones R, Lee K, Michler R, O'Connor C, Oh J, Rankin G, Velazquez E, Hill J, Beyersdorf F, Bonow R, Desvigne-Nickens P, Jones R, Lee K, Oh J, Panza J, Rouleau J, Sadowski Z, Velazquez E, White H, Jones R, Velazquez E, O'Connor C, Rankin G, Sellers M, Sparrow-Parker B, McCormick A, Albright J, Dandridge R, Rittenhouse L, Wagstaff D, Wakeley N, Burns S, Williams M, Bailey D, Parrish L, Daniels H, Grissom G, Medlin K, Lee K, She L, McDaniel A, Lokhnygina Y, Greene D, Moore V, Pohost G, Agarwal S, Apte P, Bahukha P, Chow M, Chu X, Doyle M, Forder J, Ocon M, Reddy V, Santos N, Tripathi R, Varadarajan P, Oh J, Blahnik F, Bruce C, Lin G, Manahan B, Miller D, Miller F, Pellikka P, Springer R, Welper J, Wiste H, Mark D, Anstrom K, Baloch K, Burnette A, Clapp-Channing N, Cowper P, Davidson-Ray N, Drew L, Harding T, Hunt V, Knight D, Patterson A, Redick T, Sanderford B, Feldman A, Bristow M, Chan T, Diamond M, Maisel A, Mann D, McNamara D, Bonow R, Berman D, Helmer D, Holly T, Leonard S, Woods M, Panza J, McNulty M, Grayburn P, Aston S. SourceDuke Clinical Research Institute, Duke University Medical Center, Durham, NC 27710, USA. [email protected] Abstract BACKGROUND: Surgical ventricular reconstruction is a specific procedure designed to reduce left ventricular volume in patients with heart failure caused by coronary artery disease. We conducted a trial to address the question of whether surgical ventricular reconstruction added to coronary-artery bypass grafting (CABG) would decrease the rate of death or hospitalization for cardiac causes, as compared with CABG alone. METHODS: Between September 2002 and January 2006, a total of 1000 patients with an ejection fraction of 35% or less, coronary artery disease that was amenable to CABG, and dominant anterior left ventricular dysfunction that was amenable to surgical ventricular reconstruction were randomly assigned to undergo either CABG alone (499 patients) or CABG with surgical ventricular reconstruction (501 patients). The primary outcome was a composite of death from any cause and hospitalization for cardiac causes. The median follow-up was 48 months. RESULTS: Surgical ventricular reconstruction reduced the end-systolic volume index by 19%, as compared with a reduction of 6% with CABG alone. Cardiac symptoms and exercise tolerance improved from baseline to a similar degree in the two study groups. However, no significant difference was observed in the primary outcome, which occurred in 292 patients (59%) who were assigned to undergo CABG alone and in 289 patients (58%) who were assigned to undergo CABG with surgical ventricular reconstruction (hazard ratio for the combined approach, 0.99; 95% confidence interval, 0.84 to 1.17; P=0.90). CONCLUSIONS: Adding surgical ventricular reconstruction to CABG reduced the left ventricular volume, as compared with CABG alone. However, this anatomical change was not associated with a greater improvement in symptoms or exercise tolerance or with a reduction in the rate of death or hospitalization for cardiac causes. (ClinicalTrials.gov number, NCT00023595.

    Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers

    Get PDF
    "This is the peer reviewed version of the following article: Gottselig, N., W. Amelung, J. W. Kirchner, R. Bol, W. Eugster, S. J. Granger, C. Hernández-Crespo, et al. 2017. Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. Global Biogeochemical Cycles 31 (10). American Geophysical Union (AGU): 1592 1607. doi:10.1002/2017gb005657, which has been published in final form at https://doi.org/10.1002/2017GB005657. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Biogeochemical cycling of elements largely occurs in dissolved state, but many elements may also be bound to natural nanoparticles (NNP, 1-100 nm) and fine colloids (100-450 nm). We examined the hypothesis that the size and composition of stream water NNP and colloids vary systematically across Europe. To test this hypothesis, 96 stream water samples were simultaneously collected in 26 forested headwater catchments along two transects across Europe. Three size fractions (similar to 1-20 nm, >20-60 nm, and >60 nm) of NNP and fine colloids were identified with Field Flow Fractionation coupled to inductively coupled plasma mass spectrometry and an organic carbon detector. The results showed that NNP and fine colloids constituted between 2 +/- 5% (Si) and 53 +/- 21% (Fe; mean +/- SD) of total element concentrations, indicating a substantial contribution of particles to element transport in these European streams, especially for P and Fe. The particulate contents of Fe, Al, and organic C were correlated to their total element concentrations, but those of particulate Si, Mn, P, and Ca were not. The fine colloidal fractions >60 nm were dominated by clay minerals across all sites. The resulting element patterns of NNP <60 nm changed from North to South Europe from Fe-to Ca-dominated particles, along with associated changes in acidity, forest type, and dominant lithology.The authors gratefully acknowledge the assistance of the following people in locating suitable sampling sites, contacting site operators, performing the sampling, and providing data: A. Avila Castells (Autonomous University of Barcelona), R. Batalla (University of Lleida), P. Blomkvist (Swedish University of Agricultural Sciences), H. Bogena (Julich Research Center), A.K. Boulet (University of Aveiro), D. Estany (University of Lleida), F. Garnier (French National Institute of Agricultural Research), H.J. Hendricks-Franssen (Research Center Julich), L. JacksonBlake (James Hutton Institute, NIVA), T. Laurila (Finnish Meteorological Institute), A. Lindroth (Lund University), M.M. Monerris (Universitat Politecnica de Valencia), M. Ottosson Lofvenius (Swedish University of Agricultural Sciences), I. Taberman (Swedish University of Agricultural Sciences), F. Wendland (Research Center Julich), T. Zetterberg (Swedish University of Agricultural Sciences and The Swedish Environmental Research Institute, IVL) and further unnamed contributors. The Swedish Infrastructure for Ecosystem Science (SITES) and the Swedish Integrated Monitoring, the latter financed by the Swedish Environmental Protection Agency, and ICOS Sweden have supported sampling and provided data for the Swedish sites. J.J.K. gratefully acknowledges the support from CESAM (UID/AMB/50017/2013), funded by the FCT/MCTES (PIDDAC) with cofunding by FEDER through COMPETE. N.G. gratefully acknowledges all those who contributed to organizing and implementing the continental sampling. The raw data can be found at http://hdl.handle.net/2128/14937. This project was partly funded by the German Research Foundation (DFG KL2495/1-1).Gottselig, N.; Amelung, W.; Kirchner, J.; Bol, R.; Eugster, W.; Granger, S.; Hernández Crespo, C.... (2017). Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. Global Biogeochemical Cycles. 31(10):1592-1607. https://doi.org/10.1002/2017GB005657S159216073110Baken, S., Moens, C., van der Grift, B., & Smolders, E. (2016). Phosphate binding by natural iron-rich colloids in streams. Water Research, 98, 326-333. doi:10.1016/j.watres.2016.04.032Baken, S., Regelink, I. C., Comans, R. N. J., Smolders, E., & Koopmans, G. F. (2016). Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. Water Research, 99, 83-90. doi:10.1016/j.watres.2016.04.060Benedetti, M. F., Van Riemsdijk, W. H., Koopal, L. K., Kinniburgh, D. G., Gooddy, D. C., & Milne, C. J. (1996). Metal ion binding by natural organic matter: From the model to the field. Geochimica et Cosmochimica Acta, 60(14), 2503-2513. doi:10.1016/0016-7037(96)00113-5Binkley, D., Ice, G. G., Kaye, J., & Williams, C. A. (2004). NITROGEN AND PHOSPHORUS CONCENTRATIONS IN FOREST STREAMS OF THE UNITED STATES. Journal of the American Water Resources Association, 40(5), 1277-1291. doi:10.1111/j.1752-1688.2004.tb01586.xBishop, K., Buffam, I., Erlandsson, M., Fölster, J., Laudon, H., Seibert, J., & Temnerud, J. (2008). Aqua Incognita: the unknown headwaters. Hydrological Processes, 22(8), 1239-1242. doi:10.1002/hyp.7049Bol, R., Julich, D., Brödlin, D., Siemens, J., Kaiser, K., Dippold, M. A., … Hagedorn, F. (2016). Dissolved and colloidal phosphorus fluxes in forest ecosystems-an almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 179(4), 425-438. doi:10.1002/jpln.201600079Buffle, J., & Leppard, G. G. (1995). Characterization of Aquatic Colloids and Macromolecules. 2. Key Role of Physical Structures on Analytical Results. Environmental Science & Technology, 29(9), 2176-2184. doi:10.1021/es00009a005Celi, L., & Barberis, E. (s. f.). Abiotic stabilization of organic phosphorus in the environment. Organic phosphorus in the environment, 113-132. doi:10.1079/9780851998220.0113Dahlqvist, R., Benedetti, M. F., Andersson, K., Turner, D., Larsson, T., Stolpe, B., & Ingri, J. (2004). Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers. Geochimica et Cosmochimica Acta, 68(20), 4059-4075. doi:10.1016/j.gca.2004.04.007Darch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., & Chadwick, D. (2014). A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and Water: Implications for Water Quality. Critical Reviews in Environmental Science and Technology, 44(19), 2172-2202. doi:10.1080/10643389.2013.790752Dynesius, M., & Nilsson, C. (1994). Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science, 266(5186), 753-762. doi:10.1126/science.266.5186.753Erickson, H. P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 11(1), 32-51. doi:10.1007/s12575-009-9008-xEspinosa, M., Turner, B. L., & Haygarth, P. M. (1999). Preconcentration and Separation of Trace Phosphorus Compounds in Soil Leachate. Journal of Environmental Quality, 28(5), 1497-1504. doi:10.2134/jeq1999.00472425002800050015xFernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., … Peñuelas, J. (2014). Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4(6), 471-476. doi:10.1038/nclimate2177Giddings, J., Yang, F., & Myers, M. (1976). Flow-field-flow fractionation: a versatile new separation method. Science, 193(4259), 1244-1245. doi:10.1126/science.959835Gimbert, L. J., Andrew, K. N., Haygarth, P. M., & Worsfold, P. J. (2003). Environmental applications of flow field-flow fractionation (FIFFF). TrAC Trends in Analytical Chemistry, 22(9), 615-633. doi:10.1016/s0165-9936(03)01103-8Gottselig, N., Bol, R., Nischwitz, V., Vereecken, H., Amelung, W., & Klumpp, E. (2014). Distribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal, 13(7), vzj2014.01.0005. doi:10.2136/vzj2014.01.0005Gottselig, N., Nischwitz, V., Meyn, T., Amelung, W., Bol, R., Halle, C., … Klumpp, E. (2017). Phosphorus Binding to Nanoparticles and Colloids in Forest Stream Waters. Vadose Zone Journal, 16(3), vzj2016.07.0064. doi:10.2136/vzj2016.07.0064Hagedorn , A. G. 2006 EG-Sicherheitsdatenblatt (Gemäß 2001/58/EG)Hart, B. T., Douglas, G. B., Beckett, R., Van Put, A., & Van Grieken, R. E. (1993). Characterization of colloidal and particulate matter transported by the magela creek system, Northern Australia. Hydrological Processes, 7(1), 105-118. doi:10.1002/hyp.3360070111Hassellöv, M., Lyvén, B., Haraldsson, C., & Sirinawin, W. (1999). Determination of Continuous Size and Trace Element Distribution of Colloidal Material in Natural Water by On-Line Coupling of Flow Field-Flow Fractionation with ICPMS. Analytical Chemistry, 71(16), 3497-3502. doi:10.1021/ac981455yHassellov, M., & von der Kammer, F. (2008). Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems. Elements, 4(6), 401-406. doi:10.2113/gselements.4.6.401Hens, M., & Merckx, R. (2001). Functional Characterization of Colloidal Phosphorus Species in the Soil Solution of Sandy Soils. Environmental Science & Technology, 35(3), 493-500. doi:10.1021/es0013576Hill, D. M., & Aplin, A. C. (2001). Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains. Limnology and Oceanography, 46(2), 331-344. doi:10.4319/lo.2001.46.2.0331Jarvie, H. P., Neal, C., Rowland, A. P., Neal, M., Morris, P. N., Lead, J. R., … Hockenhull, K. (2012). Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions. Science of The Total Environment, 434, 171-185. doi:10.1016/j.scitotenv.2011.11.061Jiang, X., Bol, R., Nischwitz, V., Siebers, N., Willbold, S., Vereecken, H., … Klumpp, E. (2015). Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil. Journal of Environmental Quality, 44(6), 1772-1781. doi:10.2134/jeq2015.02.0085Kögel-Knabner, I., & Amelung, W. (2014). Dynamics, Chemistry, and Preservation of Organic Matter in Soils. Treatise on Geochemistry, 157-215. doi:10.1016/b978-0-08-095975-7.01012-3Krám, P., Hruška, J., & Shanley, J. B. (2012). Streamwater chemistry in three contrasting monolithologic Czech catchments. Applied Geochemistry, 27(9), 1854-1863. doi:10.1016/j.apgeochem.2012.02.020Lyvén, B., Hassellöv, M., Turner, D. R., Haraldsson, C., & Andersson, K. (2003). Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochimica et Cosmochimica Acta, 67(20), 3791-3802. doi:10.1016/s0016-7037(03)00087-5Marschner, B., & Kalbitz, K. (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113(3-4), 211-235. doi:10.1016/s0016-7061(02)00362-2Martin, J.-M., Dai, M.-H., & Cauwet, G. (1995). Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnology and Oceanography, 40(1), 119-131. doi:10.4319/lo.1995.40.1.0119Mattsson, T., Kortelainen, P., Laubel, A., Evans, D., Pujo-Pay, M., Räike, A., & Conan, P. (2009). Export of dissolved organic matter in relation to land use along a European climatic gradient. Science of The Total Environment, 407(6), 1967-1976. doi:10.1016/j.scitotenv.2008.11.014Missong, A., Bol, R., Willbold, S., Siemens, J., & Klumpp, E. (2016). Phosphorus forms in forest soil colloids as revealed by liquid-state31P-NMR. Journal of Plant Nutrition and Soil Science, 179(2), 159-167. doi:10.1002/jpln.201500119Montalvo, D., Degryse, F., & McLaughlin, M. J. (2015). Natural Colloidal P and Its Contribution to Plant P Uptake. Environmental Science & Technology, 49(6), 3427-3434. doi:10.1021/es504643fNeubauer, E., Köhler, S. J., von der Kammer, F., Laudon, H., & Hofmann, T. (2013). Effect of pH and Stream Order on Iron and Arsenic Speciation in Boreal Catchments. Environmental Science & Technology, 47(13), 7120-7128. doi:10.1021/es401193jNeubauer, E., v.d. Kammer, F., & Hofmann, T. (2011). Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation. Journal of Chromatography A, 1218(38), 6763-6773. doi:10.1016/j.chroma.2011.07.010Nischwitz, V., & Goenaga-Infante, H. (2012). Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 27(7), 1084. doi:10.1039/c2ja10387gRan, Y., Fu, J. ., Sheng, G. ., Beckett, R., & Hart, B. . (2000). Fractionation and composition of colloidal and suspended particulate materials in rivers. Chemosphere, 41(1-2), 33-43. doi:10.1016/s0045-6535(99)00387-2Regelink, I. C., Koopmans, G. F., van der Salm, C., Weng, L., & van Riemsdijk, W. H. (2013). Characterization of Colloidal Phosphorus Species in Drainage Waters from a Clay Soil Using Asymmetric Flow Field-Flow Fractionation. Journal of Environmental Quality, 42(2), 464-473. doi:10.2134/jeq2012.0322Regelink, I. C., Voegelin, A., Weng, L., Koopmans, G. F., & Comans, R. N. J. (2014). Characterization of Colloidal Fe from Soils Using Field-Flow Fractionation and Fe K-Edge X-ray Absorption Spectroscopy. Environmental Science & Technology, 48(8), 4307-4316. doi:10.1021/es405330xRegelink, I. C., Weng, L., & van Riemsdijk, W. H. (2011). The contribution of organic and mineral colloidal nanoparticles to element transport in a podzol soil. Applied Geochemistry, 26, S241-S244. doi:10.1016/j.apgeochem.2011.03.114RICHARDSON, C. J. (1985). Mechanisms Controlling Phosphorus Retention Capacity in Freshwater Wetlands. Science, 228(4706), 1424-1427. doi:10.1126/science.228.4706.1424Roth , C. 2011 Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr. 1907/2006 RepSchmitt, D., Taylor, H. E., Aiken, G. R., Roth, D. A., & Frimmel, F. H. (2002). Influence of Natural Organic Matter on the Adsorption of Metal Ions onto Clay Minerals. Environmental Science & Technology, 36(13), 2932-2938. doi:10.1021/es010271pSix, J., Elliott, E. T., & Paustian, K. (1999). Aggregate and Soil Organic Matter Dynamics under Conventional and No-Tillage Systems. Soil Science Society of America Journal, 63(5), 1350-1358. doi:10.2136/sssaj1999.6351350xStolpe, B., Guo, L., Shiller, A. M., & Hassellöv, M. (2010). Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation. Marine Chemistry, 118(3-4), 119-128. doi:10.1016/j.marchem.2009.11.007Tipping, E., & Hurley, M. . (1992). A unifying model of cation binding by humic substances. Geochimica et Cosmochimica Acta, 56(10), 3627-3641. doi:10.1016/0016-7037(92)90158-fTombácz, E., Libor, Z., Illés, E., Majzik, A., & Klumpp, E. (2004). The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 35(3), 257-267. doi:10.1016/j.orggeochem.2003.11.002Trostle, K. D., Ray Runyon, J., Pohlmann, M. A., Redfield, S. E., Pelletier, J., McIntosh, J., & Chorover, J. (2016). Colloids and organic matter complexation control trace metal concentration-discharge relationships in Marshall Gulch stream waters. Water Resources Research, 52(10), 7931-7944. doi:10.1002/2016wr019072U.S. Department of Agriculture 1993 Soil survey manual, chapter 3. Selected chemical propertiesVitousek, P. (1982). Nutrient Cycling and Nutrient Use Efficiency. The American Naturalist, 119(4), 553-572. doi:10.1086/283931Wells, M. L., & Goldberg, E. D. (1991). Occurrence of small colloids in sea water. Nature, 353(6342), 342-344. doi:10.1038/353342a0Wen, L.-S., Santschi, P., Gill, G., & Paternostro, C. (1999). Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry, 63(3-4), 185-212. doi:10.1016/s0304-4203(98)00062-0Zirkler, D., Lang, F., & Kaupenjohann, M. (2012). «Lost in filtration»—The separation of soil colloids from larger particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 399, 35-40. doi:10.1016/j.colsurfa.2012.02.02

    The structure of the C4 cluster radical

    Get PDF
    The first infrared spectrum of gas phase, jet-cooled C4 has been measured by high resolution diode laser absorption spectroscopy. Twelve rovibrational transitions are assigned to the nu3(sigmau) antisymmetric stretch of linear 3Sigma - g C4. No evidence is observed for the bent structure of triplet C4 recently observed in a matrix study by Cheung and Graham [J. Chem. Phys. 91, 6664 (1989)]. Indeed, the measured band origin (1548.9368(21) cm^–1) and effective ground state C–C bond length [1.304 31(21)A] are consistent with several ab initio predictions of a rigid, linear, cumulenic structure for this cluster radical

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Molecular structure of S-ethylthioacrylate Combined vibrational spectroscopic and abinitioSCF-MO study

    Get PDF
    Ab initio 6-31G* SCF-MO calculations have been carried out on S-ethyl thioacrylate [CH2CHC(O)SCH2CH3]. Fully optimized geometries, relative stabilities, dipole moments and harmonic force fields for several conformers of this molecule have been determined and the results compared with those for similar molecules. Together with FTIR and Raman spectroscopic data, the theoretical results demonstrate that S-ethyl thioacrylate exists in two different conformations about the Cα–C bond (the s-cis and s-trans forms, with CC–CO dihedral angles equal to 0° and 180°, respectively); the s-cis conformation being more stable than the s-trans form by ca. 6 kJ mol-1 for the isolated molecule. Comparison of the experimental and theoretical vibrational spectra confirms that, as concluded from our previous study on the analogous trans-S-ethyl thiocrotonate molecule (R. Fausto, P. J. Tonge and P. R. Carey, J. Chem. Soc., FaradayTrans., 1994, 90, 3491), the presence of the s-trans isomer of an α,β-unsaturated thioester can be successfully monitored by the IR band at ca. 1170 cm-1, ascribed to the Cα–C stretching mode of this form. In addition, we were also able to identify some IR bands sensitive to the conformation of the ethyl group that may be used as spectroscopic probes to study conformational equilibria associated with this internal degree of freedom in more complex S-ethyl thioester
    corecore