321 research outputs found

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    Adaptive Feature Engineering Modeling for Ultrasound Image Classification for Decision Support

    Get PDF
    Ultrasonography is considered a relatively safe option for the diagnosis of benign and malignant cancer lesions due to the low-energy sound waves used. However, the visual interpretation of the ultrasound images is time-consuming and usually has high false alerts due to speckle noise. Improved methods of collection image-based data have been proposed to reduce noise in the images; however, this has proved not to solve the problem due to the complex nature of images and the exponential growth of biomedical datasets. Secondly, the target class in real-world biomedical datasets, that is the focus of interest of a biopsy, is usually significantly underrepresented compared to the non-target class. This makes it difficult to train standard classification models like Support Vector Machine (SVM), Decision Trees, and Nearest Neighbor techniques on biomedical datasets because they assume an equal class distribution or an equal misclassification cost. Resampling techniques by either oversampling the minority class or under-sampling the majority class have been proposed to mitigate the class imbalance problem but with minimal success. We propose a method of resolving the class imbalance problem with the design of a novel data-adaptive feature engineering model for extracting, selecting, and transforming textural features into a feature space that is inherently relevant to the application domain. We hypothesize that by maximizing the variance and preserving as much variability in well-engineered features prior to applying a classifier model will boost the differentiation of the thyroid nodules (benign or malignant) through effective model building. Our proposed a hybrid approach of applying Regression and Rule-Based techniques to build our Feature Engineering and a Bayesian Classifier respectively. In the Feature Engineering model, we transformed images pixel intensity values into a high dimensional structured dataset and fitting a regression analysis model to estimate relevant kernel parameters to be applied to the proposed filter method. We adopted an Elastic Net Regularization path to control the maximum log-likelihood estimation of the Regression model. Finally, we applied a Bayesian network inference to estimate a subset for the textural features with a significant conditional dependency in the classification of the thyroid lesion. This is performed to establish the conditional influence on the textural feature to the random factors generated through our feature engineering model and to evaluate the success criterion of our approach. The proposed approach was tested and evaluated on a public dataset obtained from thyroid cancer ultrasound diagnostic data. The analyses of the results showed that the classification performance had a significant improvement overall for accuracy and area under the curve when then proposed feature engineering model was applied to the data. We show that a high performance of 96.00% accuracy with a sensitivity and specificity of 99.64%) and 90.23% respectively was achieved for a filter size of 13 Ă— 13

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Text Classification Aided by Clustering: a Literature Review

    Get PDF

    Piece-wise Linear Support Vector Machine to Classify Distributed Data

    Get PDF
    Support Vector Machines (SVMs) is a popular and highly performing classification model with a very good generalization ability for many classification applications. This method uses kernels to classify data that are not linearly separable. The added complexity of the kernels that map data to a higher dimensional space degrade the SVM classifier performance when dealing with large datasets. Moreover, classifying a dataset by choosing an appropriate kernel and finding the best set of its parameters is challenging. Failing in this process can easily cause to an overfit problem.;In this thesis we propose the Piece-wise Linear SVM (PWLSVM) using MagKmeans clustering to address the complexity and computational cost of SVMs. We use a linear SVM to overcome the complexity of dealing with the kernels, and a MagKmeans clustering to cluster the data into balanced groups. MagKmeans which is a supervised technique clusters equal number of each class in one group. It ensures that a linear SVM has balanced training samples for each class and can attain an accurate model.;The detailed mathematical formulation and modeling of the proposed Distributed MagKmeans (D-MagKmeans) is presented. The algorithm uses a Distributed MagKmeans clustering approach to transform the PWLSVM to Distributed Piece-wise Linear SVM (D-PWLSVM). The proposed D-MagKmeans clustering approach makes the MagKmeans clustering work in distributed network by only passing the centroid of each cluster in one node only to its one-hop neighbors. This feature of the D-Magkmeans makes our approach appropriate for a distributed processing and decision making while maximizing privacy and minimizing the communication overload.;The proposed algorithm was validated using four datasets in terms of dimensions on the features and the number of samples. Pima Indian Diabetes, with 768 samples and 8 features, is the smallest dataset of the four. We also examined Abalone, with 4177 samples and 8 features, Waveform, with 5000 samples and 22 features, and EHarmony, with over half million samples and 116 features. The results reveal that a reasonable trade-off is required when dealing with a large dataset. The results also illustrate that PWLSVM and D-PWLSVM outperform SVMs on a relatively large dataset, such as EHarmony, Abalone, and Waveform

    A kernel-free L1 norm regularized ν-support vector machine model with application

    Get PDF
    With a view to overcoming a few shortcomings resulting from the kernel-based SVM models, these kernel-free support vector machine (SVM) models are newly promoted and researched. With the aim of deeply enhancing the classification accuracy of present kernel-free quadratic surface support vector machine (QSSVM) models while avoiding computational complexity, an emerging kernel-free ν-fuzzy reduced QSSVM with L1 norm regularization model is proposed. The model has well-developed sparsity to avoid computational complexity and overfitting and has been simplified as these standard linear models on condition that the data points are (nearly) linearly separable. Computational tests are implemented on several public benchmark datasets for the purpose of showing the better performance of the presented model compared with a few known binary classification models. Similarly, the numerical consequences support the more elevated training effectiveness of the presented model in comparison with those of other kernel-free SVM models. What`s more, the presented model is smoothly employed in lung cancer subtype diagnosis with good performance, by using the gene expression RNAseq-based lung cancer subtype (LUAD/LUSC) dataset in the TCGA database

    Dynamic Stability with Artificial Intelligence in Smart Grids

    Get PDF
    Environmental concerns are among the main drives of the energy transition in power systems. Smart grids are the natural evolution of power systems to become more efficient and sustainable. This modernization coincides with the vast and wide integration of energy generation and storage systems dependent on power electronics. At the same time, the low inertia power electronics, introduce new challenges in power system dynamics. In fact, the synchronisation capabilities of power systems are threatened by the emergence of new oscillations and the displacement of conventional solutions for ensuring the stability of power systems. This necessitates an equal modernization of the methods to maintain the rotor angle stability in the future smart grids. The applications of artificial intelligence in power systems are constantly increasing. The thesis reviews the most relevant works for monitoring, predicting, and controlling the rotor angle stability of power systems and presents a novel controller for power oscillation damping

    Dynamic stability with artificial intelligence in smart grids

    Get PDF
    Environmental concerns are among the main drives of the energy transition in power systems. Smart grids are the natural evolution of power systems to become more efficient and sustainable. This modernization coincides with the vast and wide integration of energy generation and storage systems dependent on power electronics. At the same time, the low inertia power electronics, introduce new challenges in power system dynamics. In fact, the synchronisation capabilities of power systems are threatened by the emergence of new oscillations and the displacement of conventional solutions for ensuring the stability of power systems. This necessitates an equal modernization of the methods to maintain the rotor angle stability in the future smart grids. The applications of artificial intelligence in power systems are constantly increasing. The thesis reviews the most relevant works for monitoring, predicting, and controlling the rotor angle stability of power systems and presents a novel controller for power oscillation damping
    • …
    corecore